
EFFICIENT SCHEDULING AND ANALYSIS FOR COMPLEX REAL-TIME SYSTEMS

Shareef Ahmed

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2025

Approved by:

James H. Anderson

Benjamin Berg

Parasara Sridhar Duggirala

Joël Goossens

Shahriar Nirjon

©2025
Shareef Ahmed

ALL RIGHTS RESERVED

ii

ABSTRACT

Shareef Ahmed: Efficient Scheduling and Analysis for Complex Real-Time Systems
(Under the direction of James H. Anderson)

Real-time systems typically have two conflicting requirements: computations must provably satisfy

application-specific timing constraints, and the system must efficiently utilize the underlying processing

resources to meet constraints related to size, weight, power, and cost. Satisfying timing constraints while

ensuring high resource utilization requires the formal analysis of such systems to be as tight as possible.

Unfortunately, obtaining tight analysis for even simple real-time systems is computationally intractable,

often leading to inefficient resource utilization. In today’s artificial-intelligence-powered real-time systems,

this challenge is further exacerbated by complex workloads involving parallel real-time tasks, precedence

constraints, and non-processing shared resources. Moreover, these workloads are often deployed on multipro-

cessor platforms augmented with hardware accelerators, introducing additional complexities.

The goal of this dissertation is to take a step toward tighter analysis of real-time systems exhibiting

complex runtime behaviors due to precedence constraints, shared resources, and parallelism. The anal-

yses presented here focus on two types of resource-management algorithms: scheduling algorithms and

synchronization algorithms. The specific contributions of this dissertation are threefold.

First, this dissertation presents a polynomial-time tight response-time analysis for a practically common

class of sequential tasks under global earliest-deadline-first (G-EDF) scheduling and its variants. It also

presents an exact response-time analysis for such systems that can be performed in pseudo-polynomial time.

Furthermore, the analysis is extended to systems with precedence constraints.

Second, this dissertation presents an optimal suspension-based locking protocol for mutual exclusion

sharing under first-in-first-out (FIFO) scheduling. It also establishes new lower-bound results to show that

existing asymptotically optimal suspension-based locking protocols for mutual exclusion under G-EDF and

its variants are nearly optimal.

Finally, this dissertation presents response-time analysis for parallel tasks with co-scheduling require-

ments, known as gang tasks, both with and without precedence constraints. It also provides intractability

iii

results for scheduling gang tasks—even in systems with soft timing constraints—and demonstrates that

G-EDF and FIFO are not optimal for such systems.

iv

To my family

v

ACKNOWLEDGEMENTS

Firstly, I express my gratitude to Almighty Allah for giving me the strength and ability to complete this

dissertation.

The completion of this dissertation would not have been possible without the support of many people.

Firstly, I would like to express my deepest gratitude to my advisor, Jim Anderson, for his unwavering

guidance, support, and mentorship throughout my doctoral journey. His dedication to research, keen attention

to detail, and tireless efforts in carefully reviewing and refining my papers have been instrumental in shaping

this dissertation. I am especially thankful for his patience, generosity with his time, and allowing me flexibility

during times when I was challenged by different needs. Jim placed a great deal of trust in me, something

I must admit felt overwhelming at times, and granted me tremendous freedom in my work. It has been a

privilege to work under his supervision.

I would also like to sincerely thank my dissertation committee members—Ben Berg, Parasara Sridhar

Duggirala, Joël Goossens, and Shahriar Nirjon—for their time, thoughtful feedback, and valuable suggestions

throughout the course of my research. I am grateful for their careful reading of my dissertation and their

insightful comments, which helped improve the quality and clarity of this work. I am especially thankful to

Sridhar and Joël for their generous support in writing recommendation letters for my academic job search. I

am also grateful to Nirjon and Sridhar for their many advices that were very helpful.

During my doctoral study, I had the privilege to work with many UNC real-time systems people. I

am exceedingly grateful to all my co-authors: Joshua Bakita, Jingyuan “Leo” Chen, Saujaus Nandi, Sims

Osborne, Stephen Tang, Zelin “Peter” Tong, Sizhe Liu, Denver Massey, and Rohan Wagle. I also extend

my appreciation to other past and present members of the UNC Real-Time Systems group: Syed Ali, Tanya

Amert, Joseph Goh, Catherine Nemitz, Nathan Otterness, Sergey Voronov, Ming Yang, Tyler Yandrofski,

and Hongyi Zhang. I would like to thank UNC real-time systems group alumnus Kecheng Yang for his

help during the academic job search process. I am also thankful to the broader systems community at UNC,

including faculty and students, for fostering an intellectually stimulating environment, particularly during the

weekly cyber-physical-systems lunch.

vi

I would also like to thank the dedicated staff of the UNC Department of Computer Science for their

invaluable support throughout my time in the program. In particular, I am grateful to Denise Kenney, Soji

Marcel Weeks, Rafael Zaldivar, Missy Wood, Tatyana Davis, and late Bil Hays for their responsiveness,

kindness, and assistance in navigating both academic and administrative matters.

My stay in Chapel Hill would have been tremendously difficult without the support of many friends. I

would like to thank Bashima Islam, Tamzeed Islam, Jisan Mahmud, Md Asadullah Turja, Nahid Sultana

Ruku, Taksir Hasan Majumder, Mahathir Monjur, and Md Mohaiminul Islam for their friendship and support

during my time at Chapel Hill. I am especially grateful to Bashima, Tamzeed, Jisan, and Turja for their

support during my early days in Chapel Hill. Their support eased me to settle in and adapt to a new culture.

Bashima and Tamzeed let me stay at their place for some days, and even cooked my favorite dishes. I would

also like to thank Shamim Hasan Zahid and Turja for their patience and generosity in teaching me how to

drive a car.

I lived in Greensboro for a significant portion of my doctoral study and I am deeply thankful to the

friends who supported me during that time. In particular, I would like to thank Md Arifur Rahman Khan

(Topu), Rajata Suvra Chakrovorty, Mohammad Bakhtiar Uddin, Israt Jahan, Sajib Aninda Dhar, and Md

Ataullah Nuri for their friendship, encouragement, and support. I am especially grateful to Shamimul Islam

and Ayesha Khan for their kindness in helping take care of my daughter during times when both my wife

and I were occupied with work. Their generosity and care made a meaningful difference and are deeply

appreciated.

I would also like to thank Md. Saidur Rahman, who supervised my research at Bangladesh University

of Engineering and Technology. He laid the foundation for my analytical thinking and approach to proving

theorems, which greatly helped me during my doctoral studies. I am also grateful to all my teachers at BUET,

especially Mohammad Kaykobad, Mohammad Sohel Rahman, Eunus Ali, Anindya Iqbal, Mahmuda Naznin,

and Atif Hasan Rahman, for their support and encouragement to pursue a Ph.D. A special thanks is due to the

Islamic Center of Greensboro for making past few years’ Ramadan comfortable.

Above all, I am forever grateful to my parents, Md Abdur Razzaque and Nazmim Zahan, whose

unwavering love, sacrifices, and prayers have shaped who I am today. I am thankful to my siblings, Tania

Sharmin and Shafeen Ahmed, for their constant support and encouragement throughout this journey. I also

extend my heartfelt appreciation to my in-laws, Md Jalil Howlader and Rehana Begum, for their kindness,

support, and belief in me. I am grateful to all my extended family members for their encouragement and good

vii

wishes over the years. Most importantly, I thank my wife, Tahniat Afsari, for her boundless love, strength,

and patience—–for standing by my side and, quite literally, keeping me alive through the most challenging

times. Honestly, I would be nowhere near completing this dissertation without her support. My deepest joy

comes from my daughter, Saniyat Shareef, whose laughter, curiosity, and presence have been a constant

source of happiness and inspiration.

Funding for this research was provided by NSF grants CNS 1563845, CNS 1717589, CPS 1837337, CPS

2038855, CPS 2038960, CNS 2151829, and CPS 2333120, ARO grant W911NF-20-1-0237, ONR grant

N00014-20-1-2698, and a dissertation completion fellowship from the UNC Graduate School.

viii

TABLE OF CONTENTS

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS .xviii

CHAPTER 1: Introduction . 1

1.1 Real-Time Systems . 2

1.1.1 Sporadic Task Model . 3

1.1.2 Hardware Model . 5

1.1.3 Scheduling Algorithms . 6

1.1.4 Schedulability, Feasibility, and Optimality . 8

1.1.5 Schedulability Test and Response-Time Analysis . 11

1.1.5.1 Emerging Real-Time Systems . 12

1.2 Limitations of the State-of-the-Art . 14

1.2.1 Non-Tight Bounds for Sequential and DAG Tasks . 14

1.2.2 Mysteries Around Optimal Suspension-Based Locking Protocols 16

1.2.3 Scheduling Gang Tasks . 18

1.3 Thesis Statement . 18

1.4 Contributions . 19

1.4.1 Tight and Exact Response-Time Bounds for Sequential and DAG Tasks 19

1.4.1.1 Periodic Tasks . 19

1.4.1.2 Periodic DAG Tasks . 20

1.4.2 Optimality Results for Suspension-Based Locking Protocols . 21

1.4.3 Scheduling Gang Tasks . 22

ix

1.4.3.1 SRT Scheduling of Independent Gang Tasks . 22

1.4.3.2 HRT Scheduling of Processing Graphs Formed by Gang Tasks 22

1.5 Organization . 23

CHAPTER 2: Background and Prior Work . 24

2.1 Sequential Tasks . 24

2.1.1 SRT-Optimal Scheduling . 27

2.1.2 Exact HRT-Schedulability Test . 30

2.1.3 SRT Response-Time Analysis . 34

2.2 DAG Tasks . 36

2.2.1 Complexities in DAG Scheduling . 38

2.2.2 DAG Scheduling Approaches . 38

2.2.3 Feasibility Results . 40

2.2.4 HRT-Schedulability Analysis . 41

2.2.5 SRT Response-Time Analysis . 42

2.2.6 Other DAG Models . 44

2.3 Suspension-Based Mutex Locks . 45

2.3.1 S-Oblivious Pi-Blocking Bounds . 49

2.3.2 S-Aware Pi-Blocking Bounds . 50

2.4 Gang Tasks . 51

2.4.1 Prior Work . 52

2.5 General Definitions and Notation . 54

2.6 Chapter Summary . 55

CHAPTER 3: Response-Time Bound for Pseudo-Harmonic Sequential Tasks . 56

3.1 System Model . 56

3.1.1 The Concept of LAG . 58

3.2 Response-Time Bound . 61

3.2.1 Properties of lag . 62

x

3.2.2 Deriving Response-Time Bounds . 72

3.2.3 An Alternate Response-Time Bound . 79

3.3 Exact Response-Time Bound . 83

3.4 Experimental Evaluation. 90

3.5 Chapter Summary . 97

CHAPTER 4: Server-Based Scheduling of DAG Tasks . 99

4.1 System Model . 99

4.2 Server-Based Scheduling of DAG Tasks . 101

4.3 Basic Response-Time Bound . 105

4.4 Exact Response-Time Bound . 109

4.4.1 Definitions and Notation . 109

4.4.2 Analysis of Servers . 113

4.4.3 Analysis of DAG Tasks . 127

4.5 Experimental Evaluation. 141

4.6 Chapter Summary . 145

CHAPTER 5: Suspension-Based Multiprocessor Locking Protocols . 147

5.1 System Model . 147

5.2 Lower-Bound Results for Non-FIFO Global JLFP Schedulers . 150

5.2.1 General Lower Bound on Pi-Blocking . 151

5.2.1.1 Task System . 151

5.2.1.2 Lower-Bound Proof . 153

5.2.1.3 Job Priority Assignment . 161

5.2.2 Improved Lower Bound Under An Additional Assumption . 165

5.2.2.1 Task System . 165

5.2.2.2 Lower-Bound Proof . 167

5.2.2.3 Job Priority Assignment . 170

5.3 Optimality Results Under FIFO Scheduling . 172

xi

5.3.1 Resource-Holder’s Progress Under FIFO Scheduling . 172

5.3.2 Mutex Locks . 173

5.3.3 k-Exclusion Locks . 176

5.3.4 Reader-Writer Locks . 179

5.4 Experimental Evaluation. 189

5.5 Chapter Summary . 192

CHAPTER 6: . 194

6.1 System Model . 195

6.2 SRT-Feasibility of Gang Tasks . 197

6.2.1 Necessary Condition for SRT-Feasibility . 198

6.2.2 Sufficient Condition for SRT-Feasibility . 199

6.3 Schedulability Under Server-Based Scheduling . 204

6.3.1 FP Scheduling of Servers . 205

6.3.2 Least-Laxity-First Scheduling of Servers . 205

6.3.3 ILP-Based Scheduling of Servers . 206

6.4 Schedulability Under G-EDF . 206

6.4.1 Non-SRT-Optimality Under G-EDF . 207

6.4.2 A G-EDF Schedulability Test . 209

6.5 Experimental Evaluation. 220

6.6 Chapter Summary . 222

CHAPTER 7: Scheduling Gang Tasks with Precedence Constraints . 224

7.1 System Model . 226

7.2 Scheduling . 228

7.2.1 Federated Scheduling . 228

7.2.2 Scheduling DAGs on Allocated Processors . 230

7.3 Parallelism-Induced Idleness . 233

7.3.1 Work-Conserving Schedulers . 234

xii

7.3.2 Semi-Work-Conserving Schedulers . 236

7.4 Response-Time Bound . 238

7.5 Processor Allocation . 248

7.6 Experimental Evaluation. 249

7.6.1 Experiments on Arbitrary Number of CEs . 249

7.6.2 Experiments on Multicore+GPU . 251

7.6.3 Case Study on Multicore+GPU . 254

7.7 Chapter Summary . 256

CHAPTER 8: Conclusion . 257

8.1 Summary of Results . 257

8.2 Other Work . 259

8.3 Future Work . 262

BIBLIOGRAPHY . 265

xiii

LIST OF TABLES

2.1 Multiprocessor simulation intervals. D&M denotes deterministic and memoryless schedulers. 33

2.2 Response-time bounds of SRT systems on identical multiprocessors. 36

2.3 Interference and dependencies under global scheduling of multiple DAGs. 39

2.4 Asymptotically optimal locking protocols for mutex locks under s-oblivious schedu-
lability analysis for JLFP scheduling. 50

3.1 Notation summary for Chapter 3. 57

4.1 Notation summary for Chapter 4. 102

5.1 Notation summary for Chapter 5. 148

5.2 Asymptotically optimal locking protocols for k-exclusion locks under s-oblivious analysis. . . 176

5.3 Asymptotically optimal locking protocols for RW locks under s-oblivious analysis. 184

6.1 Notation summary for Chapter 6. 196

7.1 Notation summary for Chapter 7. 229

xiv

LIST OF FIGURES

1.1 Illustration of a job. 4

1.2 A G-EDF schedule of three implicit-deadline tasks each with Ti = 3.0 and
Ci = 2.0 on two processors. 10

1.3 A G-FP schedule of three implicit-deadline tasks each with Ti = 3.0 and Ci = 2.0
on two processors. 11

1.4 (a) Real-time systems in past vs. (b) present [Kato et al., 2018]. Depicted workloads are a
simplification of real systems. 13

2.1 Illustration of (a) restricted parallelism with Pi = 2, (b) no parallelism, and (c)
unrestricted parallelism. 26

2.2 The class of known SRT-optimal schedulers for sporadic tasks. 29

2.3 Illustration of schedule repetition. 31

2.4 (a) A DAG G (numbers inside circles denote WCETs). (b) A schedule of G on
two processors where τ3 executes for less than its WCET. 37

2.5 (a) A DAG task and (b) an offset-based schedule of the DAG. 43

2.6 Timeline of a resource request. 46

2.7 A schedule illustrating s-oblivious pi-blocking. 47

3.1 (a) An ideal schedule, (b) a G-EDF schedule of the task system in Example 3.1.
(c) lag of τ2. 59

3.2 Illustration of the proof of Lemma 3.13. 71

3.3 Illustration of the proof of Lemma 3.20. 75

3.4 Schedule corresponding to Example 3.2 . 78

3.5 Scheduling sporadic tasks by GEL-scheduled periodic servers. 78

3.6 Average and maximum response-time bound under G-EDF with respect to the
number of processors. 92

3.7 Average and maximum response-time bound under G-FIFO with respect to the
number of processors. 93

3.8 Average and maximum response-time bound under G-FIFO with respect to the
number of processors. 94

3.9 Average and maximum response-time bound with respect to system utilizations. 95

xv

3.10 Average and maximum simulation lengths. 96

3.11 Average and maximum simulation time. 97

4.1 A DAG G1. 100

4.2 Illustration of server-based scheduling for the DAG G1 in Figure 4.1. Blue arrows
between job and server job releases represent job linking. 104

4.3 An ideal schedule of τv1 and τv2 of G1 in Figure 4.1. Server jobs are not shown as
they have the same schedule. 110

4.4 Illustration of Claim 4.7. Blue arrows from job releases to server job releases
represent linking. 135

4.5 Averate bound ratios. 142

4.6 Maximum bound ratios. 143

4.7 Simulation-interval length. 145

4.8 Simulation execution times. 146

5.1 A schedule illustrating s-oblivious pi-blocking for arbitrary-deadline HRT tasks.
These jobs are scheduled alongside jobs in other clusters that are not shown and
cause lock-related suspensions. 151

5.2 Release sequence by Rules JR1–JR3 for M = 4. Job priorities increase from
bottom to top. 154

5.3 Illustration of the proof of Lemma 5.7. 159

5.4 Release sequence by Rules SR1–SR4 for M = 4 and L = 3. 167

5.5 A schedule illustrating the OLP-F. 174

5.6 Timeline of a request under the OLP-F. 175

5.7 A schedule illustrating the k-OLP-F. Concurrent resource accesses are shaded
differently. 178

5.8 A schedule illustrating Theorem 5.9. 180

5.9 A schedule illustrating Theorem 5.10. Read and write CSs are shaded differently. 183

5.10 Experiment 1 results. 190

5.11 Experiment 2 results. 191

5.12 Experiment 3 results. 193

xvi

6.1 Two gang tasks on four processors. The number inside each execution block
denotes the degree of parallelism. Both tasks release a job at time 0. 197

6.2 Example server-based scheduling. The numbers inside server execution boxes
denote mi values. 200

6.3 An HRT-feasible schedule of ΓH in Theorem 6.2. The numbers inside execution
boxes denote mi values. 208

6.4 G-EDF schedule of Γ in Theorem 6.2. The numbers inside execution boxes denote
mi values. 208

6.5 An ideal schedule. 210

6.6 A G-EDF schedule. The numbers inside execution boxes denote mi values. 211

6.7 Schedulability results. 221

6.8 Response-time bound results. 223

7.1 Illustration of GPU-accessing DAGs when (a) GPU accesses are treated as CPU
suspension time, explicitly at a (b) coarser granularity, and (c) finer granularity. 225

7.2 A DAG G. Solid and hatched circles represent tasks allocated to two different CEs.
Tuples circles represent (mi, Ci). 227

7.3 Scheduling DAG nodes sequentially on a CE. 230

7.4 A work-conserving schedule of G in Figure 7.2. 231

7.5 A semi-work-conserving schedule of G in Figure 2.4. 232

7.6 A DAG. Numbers outside circles denote mi values. 235

7.7 Proof of Lemma 7.3. 241

7.8 Results of experiments on arbitrary number of CEs. 250

7.9 Normalized bound vs. edge-generation probability. 252

7.10 Normalized bound vs. node count. 253

7.11 Results of multi-DAG experiments on multicore+GPU. 255

xvii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CPU Central Processing Unit

CS Critical Section

DAG Directed Acyclic Graph

DNN Deep Neural Network

EDF Earliest-Deadline-First

EDZL Earliest Deadline Zero Laxity

FIFO First-In-First-Out

FP Fixed Priority

FPGA Field-Programmable Gate Arrays

GEL Global-EDF-Like

GPU Graphics Processing Unit

HRT Hard Real Time

ILP Integer Linear Program

JLDP Job-Level Dynamic-Priority

JLFP Job-Level Fixed-Priority

LCM Least Common Multiple

LLF Least Laxity First

OS Operating System

Pi Priority Inversion

rp Restricted Parallelism

SWap-C Size, Weight, Power, and Cost

SRT Soft Real Time

SMT Simultaneous Multithreading

TPU Tensor Processing Unit

WCET Worst-Case Execution Time

WCER Worst-Case Execution Requirement

xviii

CHAPTER 1: INTRODUCTION

Due to the physical and thermal limitations of increasing clock speeds, hardware manufacturers have

primarily focused on designing parallel computing platforms over the past few decades. Consequently, today’s

computing landscape is dominated by computing platforms equipped with multiple processing cores, such as

multicore machines, graphics processing units (GPUs), tensor processing units (TPUs), field-programmable

gate arrays (FPGAs), etc. These hardware advances have fueled unprecedented advances in artificial

intelligence (AI) algorithms that use highly parallel computation to enable autonomous functionalities. Real-

time systems are also evolving to adopt such autonomous functionalities, with active industry efforts in the

pursuit of autonomous vehicles as a notable example. However, enabling autonomous functionalities in many

real-time systems presents two significant challenges that do not typically arise in general-purpose computing

systems, as discussed below.

Certification. Many real-time systems, such as autonomous vehicles, interact with the physical world in

safety-critical ways, where incorrect operation can lead to catastrophic consequences. For example, an

autonomous vehicle may collide with an obstacle if the obstacle is not accurately detected. Moreover, to

avoid a collision, the obstacle must also be detected within a certain time limit after sensor data is received.

Thus, real-time systems must be both functionally and temporally correct. To ensure safe operation, these

systems should be certified for both functional and temporal correctness before their real-world deployment.

Resource efficiency. Real-time systems are typically resource-constrained, as they must operate within

specific size, weight, power, and cost (SWaP-C) constraints. For example, autonomous vehicles should be

affordable to ensure their widespread adoption. Today, approximately 40% of a car’s cost is due to electronic

components [Caranddriver, 2020]. Thus, cost can be reduced by minimizing the necessary computing

resources. Similarly, using fewer computing resources can reduce size, weight, and power consumption,

resulting in improved fuel efficiency.

Unfortunately, achieving both certifiability and high resource efficiency is challenging due to inherent

trade-offs. For example, having a significantly large number of processors simplifies the certification of

1

temporal correctness, as each computation can be statically assigned to a dedicated set of processors. In

contrast, using fewer processors makes it more difficult to certify timing correctness due to the pessimism

in formal analysis that arises when many computations must compete for limited compute resources. This

dissertation aims to advance the certification of temporal correctness in real-time systems while reducing

the number of required processing resources. To that end, it considers a wide range of workloads found in

today’s autonomous real-time systems.

We begin this chapter by providing an introduction to real-time systems and discussing features common

in modern autonomous real-time systems. We then describe the specific problems addressed in this dissertation.

Finally, we present the thesis statement, summarize the key contributions, and provide an outline for the

remainder of the dissertation.

1.1 Real-Time Systems

A computer system typically requires functional correctness, meaning it produces the correct output

for every valid input. In addition to being functionally correct, real-time systems also require temporal

correctness, which means that each correct output must be produced within an application-specific time

limit, typically called a deadline. At first glance, temporal correctness may appear to be a matter of devising

efficient algorithms and their implementations. However, many resource management decisions in a computer

system can also affect its temporal correctness. Such decisions are necessary when multiple tasks (e.g.,

processes or threads) compete for a set of shared processors and other resources such as shared data, memory

bandwidth etc. For example, in an autonomous vehicle, even a highly efficient object detection task may

not be able to detect surrounding objects if the task is not given sufficient CPU time before the detection

deadline. Thus, when designing a real-time system, resource management decisions must be carefully made,

and whether such decisions ensure temporal correctness must be validated before system deployment.

Validating temporal correctness. Validating temporal correctness of a real-time system is typically consid-

ered an orthogonal problem to validating functional correctness. Commonly, a two-step approach is used to

validate temporal correctness of a system. In the first step, an appropriate model of the system is developed

by abstracting different computations as tasks, determining relationships among these tasks, characterizing

properties of the hardware platform (e.g., processor speeds), etc. Additionally, different model parameters,

2

such as task execution times, are determined. In the second step, the model is analyzed to validate temporal

correctness using schedulability analysis with respect to the chosen resource management algorithms.

Considered resource management algorithms. In this dissertation, we focus on the effect of the following

two types of resource management algorithms on the temporal correctness of real-time systems:

• Scheduling algorithms. A scheduling algorithm is an operating system (OS) procedure that decides

which tasks to execute at any time instant. Although every computer system has a scheduling algorithm,

the purpose of a scheduling algorithm for real-time systems and general-purpose computer systems

differs. In a real-time system, the goal of a scheduling algorithm is to provide timing guarantees

for each task in all possible execution scenarios. In contrast, a scheduling algorithm usually aims to

optimize average-case behavior in general-purpose computer systems.

• Synchronization algorithms. Synchronization algorithms are used to arbitrate access to shared

resources that have certain sharing constraints. An example is a shared data object that has a mutual

exclusion (mutex) sharing constraint to prevent race conditions, which occur when multiple tasks

access the shared data object concurrently.

To illustrate how these algorithms affect temporal correctness and how such correctness can be validated,

we introduce a classic real-time task model, widely known as the sporadic task model.

1.1.1 Sporadic Task Model

Since the seminal paper by Liu and Layland [Liu and Layland, 1973], the sporadic task model has been

widely recognized as a fundamental workload model for real-time systems. Under the sporadic task model, a

system consists of a set of sporadic tasks. Each task is sequential, meaning it consists of a single thread of

execution. Moreover, all tasks are independent, i.e., the execution of one task does not depend on any other.

We use the terms sporadic task and sequential task interchangeably.1

Each task τi releases a potentially infinite sequence of jobs (task instances) τi,1, τi,2, The period of

a task τi, denoted by Ti, represents the minimum separation time between consecutive jobs of τi. In other

words, the inverse of the period defines the maximum rate at which jobs of a task can be invoked. A task τi is

1The term sporadic refers to the minimum separation time between consecutive jobs, while the term sequential refers
to the single-threaded (non-parallel) execution of a task instance. Traditionally, the term sporadic is commonly used
when referring to such tasks.

3

Time

τi,j

r(τi,j) d(τi,j) f(τi,j)

Response time
Tardiness

Di

Release

Deadline

Completion

Execution

Figure 1.1: Illustration of a job.

called periodic if the separation time between its consecutive jobs is exactly Ti. A system is called periodic

if all its tasks are periodic. Each task τi has a worst-case execution time (WCET), denoted by Ci, which

represents the maximum execution time that a job of τi may take to complete on a unit-speed processor. Each

task τi also has a relative deadline, denoted by Di. Task τi has an implicit deadline if Di = Ti, a constrained

deadline if Di ≤ Ti, and an arbitrary deadline if no relationship between Di and Ti is assumed. Task τi’s

utilization is given by ui = Ci
Ti

, which indicates the worst-case amount of processing capacity that jobs of τi

may demand per time unit in the long term. The total utilization of all tasks, denoted by Utot, is the sum of

all per-task utilizations.

The release time and completion time of job τi,j are denoted by r(τi,j) and f(τi,j), respectively. The

absolute deadline, or simply deadline, of a job, denoted by d(τi,j), is defined as d(τi,j) = r(τi,j) +Di (see

Figure 1.1). Thus, the deadline of a job is Di time units after its release time. The response time of τi,j is

f(τi,j)− r(τi,j), which is the duration between the job’s completion time and release time. The response

time, also known as the worst-case response time, of task τi is supj{f(τi,j)− r(τi,j)}. Any job that does not

complete execution by its deadline is said to miss its deadline. If a job that misses its deadline is still allowed

to complete execution, then f(τi,j) > d(τi,j). Such a job is called tardy, and its tardiness is f(τi,j)− d(τi,j).

In contrast, a job that finishes execution by its deadline has zero tardiness. Thus, task τi’s tardiness is defined

as supj{0, f(τi,j)− d(τi,j)}.

In an instantiation of a task system, the release time and execution time of each job are known. In other

words, an instantiation represents an execution scenario of the task system. There can be infinitely many

instantiations of a task system.

Hard vs. soft real-time systems. Hard real-time (HRT) systems require every job of each task to meet its

deadline; therefore, no job can be tardy in an HRT system. Missing a deadline in such systems, such as an

engine control system, can lead to catastrophic consequences. In contrast, soft real-time (SRT) systems can

4

tolerate occasional deadline misses without severe consequences. One criterion for the temporal correctness

of an SRT system is that each task must have a bounded response time (and hence, bounded tardiness).2 An

example of an SRT system is a streaming application, where a certain number of video frames are expected to

be processed per time unit. However, occasionally dropping or delaying some frames does not significantly

degrade the quality of service. Note that a system may contain both HRT and SRT components; for example,

an autonomous vehicle’s object detection component is HRT, whereas its infotainment component is SRT.

Since the inception of real-time systems as a research area, HRT systems have been the primary focus of

real-time systems research. However, SRT systems also warrant attention due to their widespread presence in

industrial applications. A recent survey of industrial real-time systems reported that approximately 67% of

the systems surveyed include SRT components [Akesson et al., 2022]. Moreover, allowing deadline misses

often enables deploying systems on less powerful hardware, e.g., on fewer processors. This is because strictly

meeting deadlines leads to conservative designs, where all processors may be fully utilized only in worst-case

scenarios (e.g., when many jobs arrive in the system concurrently) but remain underutilized most of the time.

1.1.2 Hardware Model

The sporadic task model has been extensively studied in the context of uniprocessor scheduling. Since

the advent of multicore technology, research focus has shifted toward shared-memory multiprocessor systems.

In the multiprocessor case, various configurations are possible based on processor speeds, leading to the

following taxonomy of multiprocessor models [Pinedo, 2008].

• Identical. All processors operate at the same speed at all times. Without loss of generality, each

processor is assumed to have a unit speed.

• Uniform. The speed of a processor can be different from that of others, but the speed remains

consistently the same.

• Unrelated. A processor’s speed can vary with respect to the task it is executing, i.e., a processor can

execute jobs of different tasks at different speeds.

2Other criteria for temporal correctness of SRT systems exist, e.g., at least a specified percentage of deadlines must
be met [Jain et al., 2002], or x out of any y consecutive jobs of each task must meet their deadlines [Hamdaoui and
Ramanathan, 1995; Koren and Shasha, 1995; West and Poellabauer, 2000].

5

According to the above classification, the identical and uniform multiprocessor models are special cases

of the uniform and unrelated models, respectively. This dissertation focuses on task scheduling on identical

multiprocessors.

Heterogeneity due to multiple compute elements. The uniform and unrelated multiprocessor models

capture heterogeneity within a single multiprocessor platform. However, heterogeneity can also result from

the integration of multiple distinct compute elements (CEs). For instance, a compute platform comprised of

both a multicore machine and a GPU is considered heterogeneous.

1.1.3 Scheduling Algorithms

When multiple tasks are executed on a multiprocessor platform, a scheduler determines which jobs run at

any given time. The algorithm used by the scheduler to make these decisions is called a scheduling algorithm.

Based on whether the scheduler allows migration, i.e., moving a job’s execution between different processors,

there are two major scheduling strategies on multiprocessors:3 global scheduling and partitioned scheduling.

Global scheduling allows tasks to migrate among all processors, whereas partitioned scheduling prohibits any

migration. A hybrid approach, known as clustered scheduling, groups processors into clusters and permits

migration only within each cluster.

Schedulers can be divided into two classes based on how they select jobs to execute: table-driven and

priority-driven schedulers. A table-driven scheduler uses an offline-generated table of jobs to select which

job to schedule at runtime. This table is finite in length and is cyclically repeated at runtime. In contrast,

priority-driven schedulers assign priorities to jobs according to a defined set of rules. At any time instant, a

priority-driven scheduler selects the jobs with the highest priorities for execution. Based on how priorities are

assigned, priority-driven schedulers can be further divided into three subclasses.

• Task-level fixed priority schedulers. A task-level fixed-priority scheduler, or simply a fixed-priority

(FP) scheduler, assigns the same priority to all jobs of a task. An example of FP schedulers is the

well-known rate-monotonic (RM) scheduler. Under RM scheduling, tasks are prioritized in order of

increasing periods, i.e., tasks with smaller periods have higher priorities.

• Job-level fixed priority schedulers. Under a job-level fixed-priority (JLFP) scheduler, a job’s priority

always remains the same. However, different jobs of the same task can have different priorities. Note

3Migration is not applicable on a uniprocessor.

6

that any FP scheduler is also a JLFP scheduler. The earliest-deadline-first (EDF) scheduler is a JLFP

scheduler but not an FP scheduler. Under EDF scheduling, jobs with earlier deadlines have higher

priorities.

• Job-level dynamic priority schedulers. Under a job-level dynamic-priority (JLDP) scheduler, a

job’s priority can change dynamically with respect to time. Thus, JLDP schedulers generalize JLFP

schedulers. The least-laxity-first (LLF) scheduler is a JLDP scheduler but not a JLFP scheduler. Under

LLF scheduling, job priorities are determined at runtime based on the laxity (also known as slack) of a

job. The laxity of a job at a time instant is the amount of time remaining until its deadline minus its

remaining execution time. Since laxity changes continuously over time (especially for running jobs, as

their remaining execution time decreases), a job’s priority can change frequently.

When referring to a multiprocessor scheduler, we use the term ‘global’, ‘partitioned’, or ‘clustered’

(abbreviated as ‘G’, ‘P’, or ‘C’) in the prefix of the scheduler’s name to denote whether the corresponding

scheduler is a global, partitioned, or clustered scheduler, respectively. For example, G-EDF, P-EDF, and

C-EDF refer to global, partitioned, and clustered EDF scheduling, respectively.

Preemptive vs. non-preemptive scheduling. Under preemptive scheduling, an executing job can be inter-

rupted at any time and resumed later. Under a priority-driven preemptive scheduler, a job is typically pre-

empted when a higher-priority job arrives or when the priority of a job increases. In contrast, non-preemptive

scheduling does not allow a job to be interrupted once it starts executing; it must run to completion before

another job can begin on the same processor. Limited preemptive scheduling is a hybrid of these two

approaches, allowing preemption only at specific points during a job’s execution. Preemptivity can also be

defined at the job level: whether a job can be preempted depends on whether it is currently executing in a

preemptive or non-preemptive section. In this dissertation, we focus on preemptive scheduling.

Work-conserving vs. non-work-conserving scheduling. In addition, a scheduler can be either work-

conserving or non-work-conserving. A work-conserving scheduler ensures that no processor is idle at any

time instant if there exists a ready job that is not currently scheduled.4 In contrast, a non-work-conserving

scheduler may leave a processor idle even when there is a ready but unscheduled job.

4This statement applies to global scheduling. More generally, under clustered work-conserving scheduling, no processor
within a job’s cluster can be idle when the job is ready but unscheduled.

7

Continuous vs. discrete time. When time is assumed to be continuous, scheduling decisions, job releases,

and completions can occur at any real-valued time. However, real-time systems typically operate under a

discrete-time model, where the system time unit is determined by the clock resolution. Throughout this

dissertation, we assume time to be discrete, with the unit of time set to 1.0. All scheduling decisions are

made at integer points in time. We also assume all task parameters to be integers. Even if a job completes

its execution at a fractional time instant, no new job is scheduled until the next integer time point. A job

completes execution at time t if it executes for the last time during [t − 1, t). A job completes execution

before time t if it completes at or before t− 1.

1.1.4 Schedulability, Feasibility, and Optimality

We now define the term schedulability, which is specific to the used scheduling algorithm.

Definition 1.1 (Schedulability). A system is HRT-schedulable (resp., SRT-schedulable) on M processors

under a scheduling algorithm A if and only if each task’s response time is at most its relative deadline (resp.,

bounded) when scheduled on M processors under the algorithm A. ◀

Thus, if a system is HRT-schedulable (resp., SRT-schedulable) under a scheduling algorithm, then every

job meets its deadline (resp., has bounded response time) when the system is scheduled under that scheduling

algorithm. We now define the term feasibility, which indicates whether a system is schedulable by some

scheduling algorithm.

Definition 1.2 (Feasibility). A system is HRT-feasible (resp., SRT-feasible) on M processors if and only if

there exists a schedule under which the system is HRT-schedulable (resp., SRT-schedulable) onM processors.

◀

Note that, by Definition 1.2, any HRT-feasible system is also SRT-feasible. Thus, the following holds.

Task system Γ is HRT-feasible⇒ Task system Γ is SRT-feasible (1.1)

For any implicit-deadline sporadic task system, the following theorem is known about HRT-feasibility.

Theorem 1.1. [Baruah et al., 1996] A task system of implicit-deadline sporadic tasks is HRT-feasible on M

identical processors if and only if ∀ i : ui ≤ 1 and Utot ≤M hold.

8

The necessary conditions in Theorem 1.1 are intuitive. The per-task utilization constraint ensures

that no individual task demands more processing capacity than a single processor can provide. The total

utilization constraint ensures that the aggregate demand of all tasks does not exceed the total capacity of all

processors. Note that determining HRT-feasibility for arbitrary-deadline task systems is NP-hard, even when

tasks are periodic [Leung and Merrill, 1980]. However, Theorem 1.1, together with (1.1), implies that the

SRT-feasibility of any sporadic task system can be determined using the following corollary.

Corollary 1.1. A task system of sporadic tasks is SRT-feasible on M identical processors if and only if

∀ i : ui ≤ 1 and Utot ≤M hold.

In this dissertation, we mostly focus on systems that are SRT-feasible (or equivalently HRT-feasible for

the implicit-deadline case). Finally, an optimal scheduling algorithm for a class of systems can schedule any

system in that class.

Definition 1.3 (Optimality). A scheduling algorithm A is HRT-optimal (resp., SRT-optimal) for a class of

task system if and only if every HRT-feasible (resp., SRT-feasible) system of that class of task system is

HRT-schedulable (resp., SRT-schedulable) under the algorithm A. ◀

Note that a scheduling algorithm that is optimal for one class of systems may not be optimal for another.

For example, EDF is an HRT-optimal algorithm for sporadic task systems on uniprocessors but not on

multiprocessors (even when the number of processors is only two) [Dertouzos, 1973].

Capacity loss. A set of M unit-speed processors supplies M units of processing capacity per time unit.

However, it may not always be possible to schedule every system with total utilization at most M under a

given scheduling algorithm. This results in capacity loss (also called utilization loss), where some processing

capacity remains unused. Capacity loss can be inherent to a particular task model (or a class of task systems).

For example, consider a class of HRT task systems where relative deadlines are a small fraction of task

periods. In such cases, no task system in that class with total utilization of M is HRT-feasible. Thus, capacity

loss is inherent to that class of task systems. Even when capacity loss is not inherent to the task model, it can

still occur due to the choice of scheduling algorithm. For instance, using a non-optimal scheduling algorithm

may render a feasible task system unschedulable, resulting in algorithmic capacity loss.

Global EDF and global first-in-first-out scheduling. This dissertation focuses on a class of SRT-optimal

JLFP schedulers that contains the global EDF (G-EDF) and global first-in-first-out (G-FIFO) schedulers.

9

Time

Deadline miss

τ1

τ2

τ3

0 5 10

Release

Deadline

Completion

Execution

Figure 1.2: A G-EDF schedule of three implicit-deadline tasks each with Ti = 3.0 and Ci = 2.0 on two
processors.

G-EDF (resp., G-FIFO) assigns job priorities according to job deadlines (resp., release times). Being global

schedulers, G-EDF and G-FIFO allow job migrations. At any time instant, these schedulers schedule the M

highest-priority jobs (if that many exist). Note that, despite being SRT-optimal [Devi and Anderson, 2005;

Leontyev and Anderson, 2007], G-EDF and G-FIFO are not HRT-optimal for implicit-deadline tasks.

Example 1.1. Figure 1.2 shows a G-EDF schedule of three implicit-deadline tasks on two processors. The

period and WCET of each task are 3.0 and 2.0, respectively. In the schedule, ties are broken according to task

index. Every job of task τ3 misses its deadline. However, tardiness of each of these jobs is 1.0. Note that the

schedule is also the same under G-FIFO scheduling. ◀

Note that no partitioned scheduler can be SRT-optimal (or HRT-optimal) due to the bin-packing problem

inherent in partitioning. Additionally, FP schedulers are not SRT-optimal, as the response time of the

lowest-priority task in some SRT-feasible task systems can grow unboundedly under FP scheduling.

Example 1.2. Figure 1.3 shows a G-FP-schedule of three implicit-deadline tasks with Ti = 3.0 and Ci = 2.0

on three processors. Tasks are prioritized according to task indices. The response times of the jobs of τ3 grow

unboundedly. ◀

The role of deadlines in G-EDF for SRT systems. Although G-EDF uses deadlines to schedule jobs,

meeting all job deadlines is not required in SRT systems. In such systems, meeting all deadlines is desirable

but not mandatory. Alternatively, deadlines can be viewed merely as a prioritization mechanism.

10

Time

Deadline miss

τ1

τ2

τ3

0 5 10

Release

Deadline

Completion

Execution

Figure 1.3: A G-FP schedule of three implicit-deadline tasks each with Ti = 3.0 and Ci = 2.0 on two
processors.

1.1.5 Schedulability Test and Response-Time Analysis

A schedulability test is an algorithm that determines whether a task system is schedulable under a

scheduling algorithm. A test is said to be exact for a scheduling algorithm A if it deems a task system to be

schedulable if and only if the system is indeed schedulable under A. In contrast, a sufficient schedulability

test may classify a task system as unschedulable even when it is schedulable. This can lead to capacity loss,

as the test may unnecessarily reject some schedulable systems.

Response-time analysis. Response-time analysis is commonly used to test schedulability in real-time

systems. The goal of response-time analysis is to determine the worst-case response time of each task. Using

response-time analysis, the schedulability of a system can be tested by simply checking whether the derived

worst-case response time meets the (HRT or SRT) timing constraints of the system. However, deriving the

worst-case response time of a task is generally NP-hard under many scheduling algorithms [Eisenbrand and

Rothvoß, 2008, 2010]. Therefore, most response-time analyses provide an upper bound on the worst-case

response time, often called a response-time bound, of a task. The tightness of a response-time analysis is

defined as follows.

Definition 1.4 (Tight Bound). A response-time analysis for a class of systems under a scheduling algorithm

A is tight if and only if, for any processor count, there exists a system in that class such that any increase

in a task WCET makes the system unschedulable under A, and the derived response-time bound of at least

one task equals its worst-case response time. The corresponding response-time bound is called a tight

response-time bound. ◀

11

Definition 1.4 requires a task system with sufficiently large total utilization so that the task system does

not remain schedulable under the considered scheduler if any task’s utilization is increased.

We now define an exact response-time analysis as one that yields the true worst-case response times. For

consistency, we also refer to the worst-case response times as exact response-time bounds.

Definition 1.5 (Exact Bound). A response-time analysis for a class of systems under a scheduling algorithmA

is exact if and only if, for any system in that class that is HRT-schedulable underA, the derived response-time

bound of each task τi equals its worst-case response time. The corresponding response-time bound is called

an exact response-time bound. ◀

By the above definitions, an exact response-time analysis is also a tight response-time analysis.

Why does an exact test or bound matter? The lack of exact response-time bounds leads to resource

wastage in both HRT and SRT systems by preventing full utilization of available resources. In an HRT system,

a non-exact response-time analysis (and thus a non-exact schedulability test) may incorrectly classify some

schedulable systems as unschedulable. As a result, additional processors may be required to satisfy timing

constraints, even though they are not strictly necessary. In SRT systems, an exact schedulability test under

G-EDF and its variants can often be performed efficiently in polynomial time by checking a simple condition.

However, imprecise (i.e., overly conservative) response-time bounds may be too loose to be practically useful.

For example, in an SRT system, such as a video processing application [Kenna et al., 2011], task outputs may

be stored in a buffer that is read at a steady rate to simulate HRT-like completion behavior. In such systems,

the buffer size is determined based on the worst-case response time. An overly pessimistic bound would

require a disproportionately large buffer, much of which would remain unused at runtime.

Efficient analysis. Like any algorithm, a schedulability test or response-time analysis is considered efficient

if it has polynomial time complexity. Additionally, in the real-time systems literature, algorithms with pseudo-

polynomial time complexities are also considered efficient. Note that the running time of a pseudo-polynomial

time is polynomial in the largest numerical value and the length of the input [Garey and Johnson, 1990].

1.1.5.1 Emerging Real-Time Systems

In the uniprocessor era, real-time systems typically consisted of sporadic tasks. Figure 1.4(a) illustrates

such a system with an example control system of an airplane. However, as shown in Figure 1.4(b), today’s

real-time systems—such as those in autonomous vehicles—are becoming increasingly sophisticated to

12

Localization Detection Prediction

Mission planning Motion planning

CPUs GPU

Pitch Control

Lateral Control

CPU

(a) (b)

Neural
Network

Neural
Network

Sub-computations

Sub-computationsSub-computations

Figure 1.4: (a) Real-time systems in past vs. (b) present [Kato et al., 2018]. Depicted workloads are a simplification of
real systems.

support AI-based autonomous functionalities. To model such systems, more general task models have been

developed, with the sporadic task model being a special case. In the following, we describe three additional

complex features present in modern real-time systems that are also considered in this dissertation.

Dataflow dependencies. Real-time systems with autonomous functionalities typically rely on sensors to

repeatedly sample their surrounding environment. The sensor data are then processed to generate actuation

commands. For example, an autonomous vehicle uses sensors such as cameras and LiDAR to capture images

and point clouds, respectively. These data are then processed to detect objects, plan motion, and steer the

vehicle accordingly. As a result, tasks in such systems are interconnected through dataflow dependencies.

This creates processing graphs with precedence constraints, where a task’s job can be released only after

other jobs have produced the required data and completed execution. Commonly, these processing graphs

take the form of directed acyclic graphs (DAGs), which we refer to as DAG tasks. DAG tasks naturally

represent data processing in many applications, where source tasks (with no incoming edges) gather sensor

data and sink tasks (with no outgoing edges) perform actuation. Similarly to sequential tasks, DAG tasks can

be sporadic or periodic based on the separation time between their consecutive instances.

Gang tasks. Many autonomous real-time systems contain compute-heavy tasks that perform inferences using

deep neural networks (DNNs). For example, in Figure 1.4(b), the detection task uses a DNN to detect objects.

13

Such DNN-based tasks require hardware accelerators, such as GPUs, to achieve sufficiently fast execution.

Execution on GPUs has certain characteristics: multiple threads form a single task, and many threads of the

task are co-scheduled on the required number of GPU cores. These multithreaded, co-scheduled tasks are

abstracted as gang tasks.5 Gang tasks can also be sporadic or periodic.

Shared resources. Many real-time systems include non-CPU resources that are shared among multiple tasks,

such as shared data objects, GPUs, etc. For example, autonomous vehicle systems involve a large number of

shared data objects across AI-based modules, which may be accessed either directly by application code or

indirectly through dependency libraries and frameworks. A shared resource typically has a sharing constraint,

meaning that only certain protected accesses to the resource are allowed. For instance, a shared data object

may be subject to a mutex constraint, which prevents jobs from accessing the data simultaneously. To ensure

protected access, a synchronization mechanism, e.g., a locking protocol, can be employed to arbitrate access

to shared resources.

1.2 Limitations of the State-of-the-Art

We now discuss some limitations of state-of-the-art scheduling algorithms, synchronization mechanisms,

and their analyses. First, we examine the limitations of existing response-time analyses that can be applied to

any SRT-feasible sequential or DAG tasks scheduled under G-EDF, G-FIFO, and their variants. Next, we

consider suspension-based mutex sharing and highlight the limitations of existing locking protocols. Finally,

we discuss the lack of existing work addressing the scheduling of SRT sporadic gang tasks and HRT gang

tasks with precedence constraints.

1.2.1 Non-Tight Bounds for Sequential and DAG Tasks

Sequential tasks. To schedule sequential tasks, one approach to achieving reasonably small response times

for all SRT-feasible task systems is to employ a scheduler that is HRT-optimal for scheduling implicit-

deadline tasks. Many such schedulers are known, which ensure that each job τi,j finishes execution by

time r(τi,j) + Ti [Baruah et al., 1995, 1996; Anderson and Srinivasan, 2004; Regnier et al., 2011]. All of

these schedulers are JLDP schedulers, which may require numerous priority changes per job to achieve

5Gang tasks were originally introduced to reduce inter-process communication bottleneck in multiprocessors [Ouster-
hout, 1982].

14

this bound. Consequently, these schedulers often incur high runtime overheads, leading to significant

overhead-related capacity loss [Brandenburg et al., 2008; Brandenburg and Anderson, 2009]. As a result,

JLFP schedulers are more common in practice; 59%, 26%, and 17% respondents in a recently industrial

survey reported using FP, FIFO, and EDF schedulers, respectively [Akesson et al., 2022]. Among these,

G-EDF, G-FIFO, and their variants are particularly notable, as they are SRT-optimal while maintaining

relatively low runtime overheads.

Since the seminal work by Devi and Anderson [Devi and Anderson, 2005], many response-time bounds

have been developed that apply to any SRT-feasible sporadic task system under G-EDF, G-FIFO, and their

variants. Unfortunately, these response-time bounds are neither exact nor known to be tight. In fact, extensive

evaluations on synthetic workloads demonstrate that observed response times are often significantly smaller

than the existing bounds. This suggests that it is unlikely for a task system to exist that demonstrates the

tightness of these bounds. At the time of writing this dissertation, deriving an exact or tight response-time

bound for the class of SRT-feasible sporadic task systems—even via an exponential-time algorithm—has

remained an open problem for over two decades.

In addition to their lack of tightness, existing response-time bounds under G-EDF, G-FIFO, and their

variants share a common characteristic: for systems with total utilizations close to the number of processors,

the bounds increase as the processor count increases. This behavior can be observed in the response-time

bound presented in the following theorem, which remains the best-known closed-form bound to date.

Theorem 1.2 ([Devi and Anderson, 2005]). For any sporadic task system scheduled under G-EDF on M

processors, the response time of a task τi is at most

Ti +
CM−1 −mink{Ck}

M − UM−2
+ Ci, (1.2)

where Cℓ =
∑

ℓ highest Cj and Uℓ =
∑

ℓ highest uj .

To see how (1.2) can grow with respect to the processor count, consider a pathological scenario where

CM−1 ≈ (M −1) ·maxk{Ck} and UM−2 ≈ (M −2). Substituting these values into (1.2), the response-time

bound can be as large as Ti + M−2
2 maxk{Ck}+ Ci. Due to the term M−2

2 maxk{Ck}, the response-time

bound increases linearly with respect to the processor count for systems with CM−1 ≈ (M − 1)maxk{Ck}

and UM−2 ≈ (M − 2). This dependency on the number of processors is particularly problematic for systems

that require a large number of processors. Despite the introduction of non-closed-form bounds [Erickson et al.,

15

2014; Valente, 2016], all such bounds empirically exhibit a similar (though not necessarily linear) dependency

on the processor count. However, observed response times for synthetic workloads do not demonstrate such

a dependency. These issues lead to the following questions: Can we derive a tight or exact response-time

analysis for all SRT-feasible sequential tasks under G-EDF, G-FIFO, and their variants? Additionally, is it

possible to derive a response-time bound that does not increase with respect to the processor count?

DAG tasks. The temporal correctness of a DAG task typically requires satisfying constraints on its end-to-end

response time, or simply response time, which represents the time elapsed between sensing at a source node

and the corresponding actuation at a sink node. Deriving response-time bounds for DAG tasks has been a

major focus in real-time systems research over the past decade; recent work includes [He et al., 2022; Sun

et al., 2021; Amert et al., 2019; Zhao et al., 2020; Wang et al., 2019; Voronov et al., 2021b; Nasri et al., 2019].

Unfortunately, no existing work provides an exact response-time analysis under any scheduler that avoids any

capacity loss, i.e., no exact response-time bounds are known under any SRT-optimal scheduler. In fact, only

one scheduling approach, called the offset-based scheduling algorithm, is known to be SRT-optimal. Under

offset-based scheduling, each DAG is converted into an “equivalent” independent sporadic task system. (We

provide a detailed review of this approach in Chapter 2.) The transformation involves assigning appropriate

task offsets—the release times of jobs relative to the release time of a job of the source task—to ensure

that DAG precedence constraints are respected. However, a task’s offset depends on analytically derived

response-time bounds of its ancestor tasks. Under the offset-based approach, a response-time bound of

a DAG is derived by taking the largest sum of the response-time bounds of all tasks on any path of the

DAG. This results in an accumulation of the pessimism inherent in the response-time bounds of sequential

tasks. Additionally, even devising exact response-time bounds for DAG tasks under offset-based scheduling

is unlikely to yield much benefit. This is because the sink node’s offset—computed based on analytical

response-time bounds of predecessor tasks—is included in the DAG task’s response-time bound. Thus, the

following question arises: Can we devise an SRT-optimal scheduling algorithm and a corresponding exact

response-time analysis for DAG tasks?

1.2.2 Mysteries Around Optimal Suspension-Based Locking Protocols

To access a shared resource, a job may need to wait—either by suspending or spinning—before it can

access the resource. This waiting leads to priority-inversion blocking (pi-blocking) when a higher-priority

16

job is delayed while a lower-priority job executes. Pi-blocking increases the response times of higher-priority

jobs. Moreover, the pi-blocking time incurred by a job must be determined and accounted for in response-time

analysis to ensure that the resulting bound includes this delay. To reduce response times, the goal of designing

a real-time locking protocol is to minimize the maximum pi-blocking time incurred by a job. A locking

protocol that achieves the minimum possible maximum per-job pi-blocking is considered optimal. If the

maximum per-job pi-blocking under a locking protocol is within a constant factor of the minimum, then it is

considered asymptotically optimal.

In recent years, several suspension-based multiprocessor real-time locking protocols have been developed

that provide asymptotically optimal upper bounds on pi-blocking under suspension-oblivious (s-oblivious)

schedulability analysis [Brandenburg and Anderson, 2010a, 2011; Brandenburg, 2013a]. An s-oblivious

schedulability analysis, such as Theorem 1.2, does not explicitly account for pi-blocking times. Instead,

pi-blocking must be treated as computation, and task WCETs are inflated accordingly before performing

the schedulability analysis. For mutual-exclusion (mutex) sharing, most (if not all) known asymptotically

optimal locking protocols under s-oblivious analysis ensure that per-job pi-blocking is at most 2M−1 request

lengths on an M -processor platform under any JLFP scheduler [Brandenburg and Anderson, 2010a, 2011].6

The commonality of this bound is somewhat surprising as these protocols include ones that target different

scheduling strategies (e.g., partitioned, global, and clustered scheduling) and employ different mechanisms to

cope with pi-blocking (e.g., priority inheritance vs. priority donation [Brandenburg and Anderson, 2010a,

2011]). In contrast, under s-oblivious analysis, the current best lower bound yields a per-job pi-blocking

bound of at least M − 1 request lengths [Brandenburg and Anderson, 2010a]. This gap between the existing

lower bound and upper bound raises an obvious question: is a pi-blocking bound of 2M − 1 request lengths

fundamental under JLFP scheduling?

Why does the ‘two’ matter in practice? When “thinking asymptotically,” a factor of two may seem

insignificant. However, use cases exist where doubling pi-blocking costs in schedulability analysis can

have serious negative consequences. For example, a common approach for predictably sharing a hardware

accelerator is to use a mutex locking protocol to ensure that each task has exclusive access when performing

an accelerator operation. In the case of a GPU, the corresponding request length can be rather large, so

doubling pi-blocking costs in analysis can easily make a system unschedulable.

6A refined statement is given in Chapter 2 by distinguishing between request blocking and release blocking.

17

1.2.3 Scheduling Gang Tasks

Despite the relevance of gang tasks in autonomous real-time systems, the scheduling of SRT gang tasks

has received little attention. Specifically, only an SRT-schedulability test under G-EDF and corresponding

response-time bounds are known [Dong et al., 2021]. Moreover, scheduling gang tasks is complicated by

the internal parallelism of each task. In particular, systems with gang tasks encounter parallelism-induced

idleness,7 which leads to capacity loss regardless of the scheduling policy employed. This gives rise to the

following question: How can we optimally schedule SRT sporadic gang tasks?

Although the above paragraph does not consider dependencies between gang tasks, many real-time

systems feature not only gang tasks but also dataflow-related precedence constraints among them. Such

systems can be modeled as gang tasks forming processing graphs. Moreover, these systems are often

scheduled on multicore machines augmented with GPUs, requiring consideration of heterogeneous platforms

consisting of multiple types of computing elements (CEs). Despite this relevance, the scheduling of gang

tasks forming processing graphs on heterogeneous platforms has not been thoroughly studied, with the

exception of a single work focused on NVIDIA-specific GPU scheduling of SRT tasks [Yang et al., 2018].

As a result, response-time analysis for such autonomous real-time systems often relies conservatively on

converting the problem to the CPU-only scheduling of processing graphs formed by sequential tasks. This

conversion models GPU execution either as self-suspension time (when no explicit GPU management is

used), or as a combination of pi-blocking time and CPU execution time (when GPU access is managed

through a locking protocol). Unfortunately, these approaches inherit the pessimism associated with the

analysis of self-suspending tasks and locking protocols. This leads to the following question: How can we

derive response-time bounds for DAGs formed by gang tasks scheduled on multiple CEs, without requiring a

conversion to a CPU-only scheduling problem?

1.3 Thesis Statement

In this dissertation, we partially address the limitations of existing work described in Section 1.2 by

supporting the following thesis statement.

7We give a detailed explanation in Chapter 6.

18

Exact and tight (within a constant factor) response-time bounds can be derived efficiently for

periodic and graph-based tasks on identical multiprocessors under G-EDF, G-FIFO, and their

variants when task periods satisfy certain properties. Multiprocessor locking protocols for mutex

sharing exist that are optimal or nearly optimal under G-EDF, G-FIFO, and their variants. For

HRT (resp., SRT) systems of gang tasks with (resp., without) precedence constraints, capacity

loss can be significantly reduced by designing new schedulability conditions and response-time

bounds.

1.4 Contributions

In this section, we elaborate on our contributions that support the above thesis. We first present our work

on developing tight and exact response-time analysis techniques for sequential and DAG tasks. Next, we

discuss our contributions on new optimality results for suspension-based multiprocessor locking protocols.

Finally, we present our contributions on scheduling gang tasks.

1.4.1 Tight and Exact Response-Time Bounds for Sequential and DAG Tasks

To overcome the limitations of prior work on scheduling sequential and DAG tasks, as discussed in

Section 1.2.1, we develop new response-time analysis techniques that provide tighter and exact bounds. In

the following, we first describe our contributions related to sequential tasks, followed by those concerning

DAG tasks.

1.4.1.1 Periodic Tasks

In Chapter 3, we give a closed-form response-time bound that is tight within a constant factor for a class

of periodic tasks, called pseudo-harmonic tasks, under G-EDF, G-FIFO, and their variants. A set of tasks is

called pseudo-harmonic if all task periods divide the largest period. Pseudo-harmonic tasks have attained

significant interest in real-time systems research due to their applicability in several application domains such

as avionics, robotics, control applications, etc. [Busquets-Mataix et al., 1996; Shih et al., 2003; Li et al., 2003;

Anssi et al., 2013; Fu et al., 2010]. For pseudo-harmonic tasks, we show that the worst-case response time of

a task τi is at most Ti +maxk{Tk} under G-FIFO and 2Ti +maxk{Tk} −mink{Tk} under G-EDF where

19

tasks have implicit deadlines. We also demonstrate that these bounds are tight within a constant factor by

providing an example task system where a task’s exact response time closely approaches the derived bounds.

In Chapter 3, we also present a simulation-based technique for computing the exact response-time bound

of any periodic task system. Developing such a technique involves addressing two fundamental questions:

first, what should each job’s execution time be during the simulation to observe exact response times?

Second, when should the simulation be terminated? The answer to the first question is straightforward under

G-EDF and its variants: the worst-case response time occurs when all jobs execute for their WCETs. In

contrast, determining when to terminate the simulation is more involved. It requires identifying a time instant

te such that, for each task τi, a job experiencing the worst-case response time completes by time te. We

show how such a te can be determined by exploiting the schedule repetition property of G-EDF schedules.

Compared to existing simulation-based techniques, our approach offers two advantages. First, while existing

techniques apply only to systems that are HRT-schedulable under G-EDF, our technique is applicable to

any SRT-feasible task system. Second, our method requires simulation for a pseudo-polynomial number of

hyperperiods (the least common multiple of all task periods), whereas existing work on similar problems

requires an exponential number. Consequently, the simulation runs in pseudo-polynomial time for systems

with pseudo-harmonic tasks.

1.4.1.2 Periodic DAG Tasks

In Chapter 4, we present a server-based scheduling algorithm for DAG tasks. In this approach, each task

receives a budget from a server and is allowed to execute only when sufficient budget is available. For such

scheduling, we develop a simulation-based technique to derive exact response-time bounds for periodic DAG

tasks by leveraging the repetitive property of server schedules. The derived response-time bounds remain

valid even when a certain number of jobs from the same task are allowed to execute in parallel—a feature

common in computer vision applications where multiple video frames may be processed concurrently. We

also give slack-reallocation methods to reclaim unused server budgets, when possible, without violating the

derived response-time bounds.

20

1.4.2 Optimality Results for Suspension-Based Locking Protocols

The next contribution in this dissertation concerns new optimality results for multiprocessor suspension-

based locking protocols, resolving long-standing mysteries surrounding the 2M − 1 pi-blocking upper bound

mentioned in Section 1.2.2.

FIFO scheduling. In Chapter 5, we propose a suspension-based mutex locking protocol called the optimal

locking protocol under FIFO scheduling (OLP-F). The OLP-F achieves the optimal s-oblivious pi-blocking

bound under C-FIFO scheduling. Thus, the OLP-F is also optimal under G-FIFO and P-FIFO scheduling.

We also consider an extension of mutex sharing called k-exclusion sharing, which allows k simultaneous

lock holders. For k-exclusion sharing, we propose the optimal locking protocol for k-exclusion under FIFO

scheduling (k-OLP-F) and show that it achieves the optimal s-oblivious pi-blocking bound under C-FIFO

scheduling. Finally, we expand even further beyond mutex sharing by considering reader-writer (RW)

sharing, where exclusive resource usage is only required for write accesses, and concurrent read accesses

are permitted. For RW sharing, we propose the read-optimal RW locking protocol under FIFO scheduling

(RW-OLP-F), which provides an optimal s-oblivious pi-blocking bound for read requests under C-FIFO

scheduling. Additionally, under the RW-OLP-F, the pi-blocking bound for write requests is just under two

request lengths of optimal.8

Non-FIFO global JLFP scheduling. In Chapter 5, we give a lower bound of 2M − 2 request lengths on

the maximum per-job pi-blocking under a broader subset of non-FIFO global JLFP schedulers that includes

G-FP and G-EDF scheduling. This lower-bound result implies that the pi-blocking bound of 2M − 1

request lengths, ensured by existing asymptotically optimal locking protocols, is just under one request length

of optimal under a class of non-FIFO global JLFP schedulers. Moreover, we show that, when a locking

protocol adheres to certain conditions, which most protocols would naturally adhere to, the maximum per-job

pi-blocking is just one time unit smaller than 2M − 1 request lengths under a class of non-FIFO global JLFP

schedulers.

8All mentioned results are also valid under C-FIFO scheduling.

21

1.4.3 Scheduling Gang Tasks

The final contribution of this dissertation is the development of new scheduling techniques and response-

time analysis for gang tasks. We consider the scheduling of both sporadic gang tasks and gang tasks with

precedence constraints. Each of these is discussed in the following sections.

1.4.3.1 SRT Scheduling of Independent Gang Tasks

In Chapter 6, we develop a necessary and a sufficient condition for SRT-feasibility of independent

gang tasks. Each condition involves associating an SRT task system with a corresponding HRT one that is

“equivalent” in a feasibility sense. Using these feasibility conditions, we show that the SRT-feasibility problem

for gang tasks is NP-hard. Leveraging the sufficient condition, we propose server-based scheduling policies

along with corresponding schedulability tests for gang tasks. Finally, we analyze G-EDF scheduling of gang

tasks. We show that G-EDF is not SRT-optimal for gang scheduling and present an improved schedulability

test under G-EDF that outperforms existing approaches.

1.4.3.2 HRT Scheduling of Processing Graphs Formed by Gang Tasks

In Chapter 7, we introduce a new task model in which gang tasks form DAGs. We study the scheduling of

such DAGs on a heterogeneous hardware platform composed of multiple CEs. This combination of workload

and hardware architecture is well suited for modeling autonomous applications running on multicore machines

augmented with GPUs. In the proposed model, GPUs are treated as computing resources rather than merely

as shared resources accessed via locking protocols (as discussed in Section 1.4.2).

To schedule multiple DAGs, we use a federated-scheduling approach in which each DAG is allocated a

set of processors on each CE. This approach can be realized on many hardware accelerators today through

their compute-partitioning capabilities [Biondi and Buttazzo, 2017; Bakita and Anderson, 2023]. To allocate

processors from different CEs to each DAG, we formulate an integer linear program (ILP). Within the allocated

set of processors, we consider scheduling each DAG in either a work-conserving or semi-work-conserving

manner. This is motivated by the fact that typical CPU scheduling approaches are work-conserving, whereas

the default scheduling behavior of NVIDIA GPUs is semi-work-conserving under certain assumptions [Bakita

and Anderson, 2024]. Under these scheduling approaches, we derive a response-time bound for each DAG

on its allocated processors, assuming that each DAG has a constrained deadline.

22

1.5 Organization

In Chapter 2, we review relevant background and related prior work. Each subsequent chapter is

self-contained with definitions and notation specific to it. In Chapters 3 and 4, we give tight and exact

response-time analysis for sequential tasks and DAG tasks, respectively. In Chapter 5, we give optimal

locking protocols under C-FIFO scheduling and present a lower bound on pi-blocking under a subset of

non-FIFO global JLFP scheduling. In Chapter 6, we present our results on SRT scheduling of independent

gang tasks. In Chapter 7, we discuss HRT scheduling of processing graphs formed by gang tasks. Finally, in

Chapter 8, we give concluding remarks and discuss future work.

23

CHAPTER 2: BACKGROUND AND PRIOR WORK

In this chapter, we provide the necessary background for this dissertation, review relevant prior work,

and position the contributions of this dissertation within the context of existing research. We begin with a

review of sequential tasks (Section 2.1), followed by a discussion of DAG tasks (Section 2.2). Next, we

review suspension-based mutex locks (Section 2.3) and gang tasks (Section 2.4). Finally, we give definitions,

notation, and assumptions that remain throughout the dissertation (Section 2.5).

2.1 Sequential Tasks

In this section, we consider the sequential task model introduced in Section 1.1.1 and provide additional

details relevant to this dissertation.

Periodic tasks. In addition to the task period and WCET, a periodic task has another parameter called its

offset (also known as phase). A task τi’s offset, denoted by Φi, is the release time of its first job τi,1. Thus,

the release time of job τi,j is

r(τi,j) = r(τ1,j) + (j − 1)Ti = Φi + (j − 1)Ti.

A periodic task system is synchronous if and only if Φi = Φk holds for every pair of tasks τi and τk. Without

loss of generality, we assume that Φi = 0 for each task τi in a synchronous periodic task system. Otherwise,

the system is said to be asynchronous.

In a concrete periodic task system, offsets of all tasks are known at design time. In contrast, in a

non-concrete periodic task system, offsets are not known. Thus, different instantiations of a concrete periodic

task system can differ only in job execution times. In contrast, two instantiations of a non-concrete periodic

task system may also have different task offsets, leading to different job release times. Unless explicitly stated

otherwise, we refer to concrete periodic task systems when discussing periodic task systems.

Pseudo-harmonic tasks. For any sporadic task system, the hyperperiod H is the least common multiple

(LCM) of all task periods. Intuitively, the hyperperiod represents the minimum length interval after which

24

the job release patterns of all tasks repeat together, assuming each task releases jobs periodically. In a

pseudo-harmonic task system, H = max{Ti} holds. This happens when all task periods divide the largest

task period. The class of pseudo-harmonic task systems contains the well-known harmonic task systems.

A task system is harmonic if and only if each task period can be divided by all smaller task periods in the

system.

Example 2.1. Consider a task system where all task periods form the set {1, 2, 4, 5, 10}ms. The hyperperiod

of this task system is 10ms. Since the hyperperiod is equal to the maximum period, this system is pseudo-

harmonic. However, the period 5ms is not divisible by all smaller periods, so the system is not harmonic. In

contrast, a task system with task periods in {1,2,4}ms is a harmonic task system. ◀

Pseudo-harmonic task systems are common in various application domains, such as automotive, avionics,

robotics, and control systems [Kramer et al., 2015; Shih et al., 2003; Li et al., 2003; Anssi et al., 2013; Fu

et al., 2010]. Moreover, harmonic task systems offer advantages in terms of schedulability. For example,

although RM scheduling is not HRT-optimal in general, it is HRT-optimal for implicit-deadline sporadic tasks

with harmonic periods on uniprocessors [Han and Tyan, 1997]. Additionally, exact HRT-schedulability test

for constrained-deadline sporadic tasks with harmonic periods on uniprocessors under FP or EDF scheduling

can be done in polynomial time [Bonifaci et al., 2013a], whereas the general problem is NP-hard [Eisenbrand

and Rothvoß, 2008; Ekberg and Yi, 2015].

Intra-task parallelism and self-dependencies. The notion of intra-task parallelism and self-dependencies

arises in SRT systems or in HRT systems where task relative deadlines exceed their periods. In such scenarios,

multiple jobs of the same task may be present in the system simultaneously. The sporadic task model assumes

that successive jobs τi,j and τi,j+1 of a task τi cannot execute in parallel. This is typically the case when all

jobs of a task execute on a single thread, e.g., when a task executes a loop where each iteration corresponds

to a job. Additionally, data dependencies between successive jobs may prevent their concurrent execution; for

instance, job τi,j+1 may require data produced by τi,j . When jobs of a task cannot execute concurrently, the

task is said to have no parallelism or immediate self-dependency. In contrast, two jobs of a task can execute

concurrently when per-job threads are allowed or when there are no data dependencies between any two jobs

of the task. In such a case, the task is said to have unrestricted parallelism or no self-dependency.

A generalization of the no parallelism and the unrestricted parallelism models, known as the restricted

parallelism (rp) model, was introduced by Amert et al. in the context of graph-based computer vision

25

Time

τi,6

τi,7

τi,8τi
50 55 60 65

Release Completion Execution

(a)

Time

τi,6 τi,7 τi,8τi
50 55 60 65

(b)

Time

τi,6

τi,7

τi,8

τi
50 55 60 65

(c)

Figure 2.1: Illustration of (a) restricted parallelism with Pi = 2, (b) no parallelism, and (c) unrestricted
parallelism.

applications [Amert et al., 2019]. Under the rp model, a task is associated with an additional parameter Pi,

called its parallelization level. The parameter Pi defines self-dependencies among τi’s jobs as follows:

job τi,j with j > Pi cannot start execution until τi,j−Pi completes. Note that Pi also represents the

number of successive jobs of τi that can execute in parallel, e.g., job τi,j can execute in parallel with jobs

τi,j−Pi+1, τi,j−Pi+2, . . . , τi,j−1. Under the rp model, τi has no parallelism (immediate self-dependency) if

Pi = 1. In contrast, τi has unrestricted parallelism (no self-dependency) if Pi =∞.

Example 2.2. Figure 2.1 depicts the execution of a task τi under different parallelization levels. In Fig-

ure 2.1(a), Pi = 2 is assumed. Assume that τi is scheduled on three processors. Jobs τi,6, τi,7, and τi,8 are

released at times 50, 54, and 58, respectively. At time 59, τi,6 is scheduled. Suppose τi,7 and τi,8 are among

the highest-priority jobs at time 60. Since Pi = 2, τi,7 is scheduled at time 60. However, τi,8 is not scheduled

until time 62 when τi,6 completes execution. In Figure 2.1(b), no parallelism is assumed; thus, all three jobs

are executed sequentially. In Figure 2.1(c), unrestricted parallelism is assumed. Thus, both τi,7 and τi,8 are

scheduled at time 60 concurrently with τi,6. ◀

26

In the remainder of this section, we first review known SRT-optimal schedulers for sporadic tasks on

identical multiprocessors. Next, we review existing exact HRT-schedulability tests for sporadic and periodic

tasks. Finally, we review existing SRT response-time analysis techniques.

2.1.1 SRT-Optimal Scheduling

In this section, we review schedulers that are SRT-optimal for scheduling sequential tasks on identical

multiprocessors.

Window-constrained scheduling. Leontyev and Anderson introduced a class of schedulers called window-

constrained schedulers, which contains many common schedulers including EDF, FIFO, least laxity first

(LLF), earliest deadline zero laxity (EDZL), etc. [Leontyev and Anderson, 2010]. Window-constrained

schedulers are defined using the concept of prioritization functions. A prioritization function is a function

of a job and time. At any time, jobs with smaller values of their prioritization functions have higher

priorities. A scheduler is window-constrained if and only if prioritization function of a job τi,j maps to a

value within an interval [r(τi,j)− ai, d(τi,j) + bj) for some task-level constants ai and bi. Since the values of

a prioritization function can vary over time, window-constrained schedulers fall under the category of JLDP

schedulers. Leontyev and Anderson showed that window-constrained schedulers are SRT-optimal [Leontyev

and Anderson, 2010].

G-EDF-like scheduling. The G-EDF-like (GEL) schedulers form a subclass of window-constrained sched-

ulers, where prioritization functions are constant functions. The constant values of the prioritization functions

are called priority points (PPs). The priority point of a job is defined by adding a relative PP (RPP) to the

job’s release time. The RPP is a task-level property—similar to the relative deadline of a task—specified by

system designers. A job’s priority is determined by its PP, with earlier PPs indicating higher priority. The

relative PP of a task τi is denoted by Yi. We assume Yi ≥ 0 holds for each task τi. The PP of a job τi,j ,

denoted by y(τi,j), is defined as

y(τi,j) = r(τi,j) + Yi. (2.1)

Note that G-FIFO (resp., G-EDF) scheduler can be obtained by setting Yi = 0 (resp., Yi = Di). GEL

schedulers are JLFP and SRT-optimal (as they are a subclass of window-constrained schedulers).

27

Semi-partitioned scheduling. Semi-partitioned scheduling is a hybrid approach combining global and

partitioned scheduling. Under semi-partitioned scheduling, only a subset of tasks is allowed to migrate, while

the remaining tasks—called fixed tasks—are statically assigned to processors. The sets of fixed and migrating

tasks are determined offline. During runtime, the scheduler schedules tasks according to the used scheduling

algorithm, without violating constraints specific to fixed and migrating tasks. The EDF-based optimal

semi-partitioned scheduler (EDF-os) [Anderson et al., 2014], the EDF-based tunable scheduler for uniform

platforms (EDF-tu) [Yang and Anderson, 2015a], and the EDF-based semi-partitioned scheduler with

containers (EDF-sc) [Hobbs et al., 2019] are SRT-optimal semi-partitioned schedulers that are derived from

EDF scheduling. The EDF with task splitting and k processor in a group (EKG) [Andersson and Tovar, 2006]

and the notional processor scheduling-fractional capacity (NPS-F)[Bletsas and Andersson, 2009] schedulers

are also SRT-optimal semi-partitioned schedulers, which are also HRT-optimal for implicit-deadline sporadic

tasks.

HRT-optimal schedulers. Since an HRT-optimal scheduler ensures that each task’s worst-case response

time is bounded by its relative deadline, any HRT-optimal scheduler is also an SRT-optimal scheduler. Many

HRT-optimal schedulers are known for implicit-deadline periodic or sporadic tasks. Many such algorithms

approximate a fluid scheduler, where each task executes at a constant rate matching its utilization. The

proportionate-fair scheduler (PFair) [Baruah et al., 1996] is one such scheduler for synchronous periodic

tasks, in which each task makes progress proportionate to its utilization. PFair is a non-work-conserving

scheduler that divides the timeline into equal-length quanta and makes scheduling decisions at each quantum.

Variants of PFair, such as the early-release fair (ERfair) [Anderson and Srinivasan, 2000] and the pseudo-

deadline (PD) [Baruah et al., 1995] schedulers, have been devised to improve its efficiency. The PD2

scheduler [Anderson and Srinivasan, 2004] further improves the efficiency of the PD scheduler and can

optimally schedule implicit-deadline HRT sporadic tasks.

The largest-local-remaining-execution-time (LLREF) [Cho et al., 2006] scheduler approximates fluid

scheduling without requiring time quanta by using additional scheduling events for periodic tasks. The

local-remaining-execution-TL-plane (LRE-TL) [Funk and Nadadur, 2009; Funk, 2010] scheduler extends

the LLREF scheduler to handle arbitrary-deadline periodic tasks and implicit-deadline sporadic tasks, while

incurring less runtime overheads. The boundary-fair (BF) [Zhu et al., 2003] scheduler also avoids the

need for time quanta and makes scheduling decisions only at period boundaries, i.e., at job release times.

28

SRT-Optimal Schedulers

Window-constrained

Semi-partitioned
GEL

GEDFFIFO

HRT-optimal

EDZL

PD2
EKG

EDF-os

Figure 2.2: The class of known SRT-optimal schedulers for sporadic tasks.

The BF2 scheduler extends the BF scheduler to support implicit-deadline sporadic tasks [Nelissen et al.,

2014]. The EKG and NPS-F schedulers are HRT-optimal for implicit-deadline sporadic tasks [Andersson

and Tovar, 2006; Andersson and Bletsas, 2008; Bletsas and Andersson, 2009]. These schedulers can be

tuned to control the number of preemptions by trading off optimality. The reduction to uniprocessor

(RUN) [Regnier et al., 2011] scheduler achieves HRT-optimality for implicit-deadline periodic tasks by

reducing the multiprocessor scheduling problem to a series of uniprocessor scheduling problems. The

deadline-partitioning-fair (DP-fair) [Levin et al., 2010] scheduling rules formalize deadline-partitioning

techniques used by BF, EKG, and others. The unfair EDF (U-EDF) [Nelissen et al., 2011, 2014] scheduler

applies scheduling principles similar to EDF without relying on fairness properties but still achieves HRT-

optimality for implicit-deadline sporadic tasks.

However, there are known impossibility results regarding HRT-optimal schedulers. Hong and Leung

showed that knowledge of both job release times and execution times is required to meet all deadlines

for an arbitrary collection of jobs [Hong and Leung, 1988]. Later, Dertouzos and Mok demonstrated that

this impossibility result still holds even when execution times are known [Dertouzos and Mok, 1989].

Subsequently, Fisher showed that no optimal scheduler exists for constrained- or arbitrary-deadline sporadic

task systems if scheduling decisions must be made without knowledge of future job releases or execution

times [Fisher, 2007].

Summary. Figure 2.2 shows the class of known SRT-optimal schedulers for sporadic tasks. The class contains

all HRT-optimal schedulers for implicit-deadline sporadic tasks and all window-constrained schedulers. The

class also contains a subset of semi-partitioned schedulers.

29

2.1.2 Exact HRT-Schedulability Test

In this section, we review prior work on exact-schedulability tests regarding G-EDF, G-FIFO, and

G-FP scheduling. The problem of determining feasibility and schedulability of a sporadic task system

exactly is intractable [Leung and Whitehead, 1982; Ekberg and Yi, 2015, 2017; Ekberg, 2020]. Thus, exact

schedulability tests are not efficient unless they are applied to small sporadic task systems. Before reviewing

the results regarding exact tests, we first review the concept of sustainability.

Sustainability. Sustainability is a property that indicates whether a system remains schedulable when it

behaves better at runtime than its worst-case assumptions [Baruah and Burns, 2006]. Such favorable behavior

may arise in several ways: jobs may execute for less than their WCETs, the true WCETs may be smaller

than the specified values used in schedulability analysis, or the actual relative deadlines may be longer than

assumed, etc. Among these, variations in execution times are of particular interest. This is because jobs

often execute for less than their WCETs, and the specified WCETs are typically conservative upper bounds.

C-sustainability (or simply, sustainability) ensures that a system deemed schedulable under assumed WCETs

remains schedulable at runtime.

Sustainability can be attributed to both a scheduler and its associated schedulability tests. A scheduler is

sustainable if it is free from timing anomalies, i.e., no job experiences an increased response time when some

jobs execute for less than their WCETs compared to when all jobs execute for their WCETs. Preemptive

EDF is a sustainable scheduler, whereas non-preemptive EDF is not.

In contrast, a schedulability test or a response-time analysis is sustainable if its conclusions remain valid

even when some jobs execute for less than their WCETs. If a test or analysis does not assume that all jobs

execute for their WCETs, then it is sustainable by construction. If such an assumption is made, then the

analysis remains valid at runtime only if the underlying scheduler is itself sustainable or if execution for full

WCETs is enforced for all jobs at runtime. This enforcement can be achieved by refraining from scheduling

any job on the processor where a job completed early until the full WCET duration has elapsed.

Simulation-based tests. For sustainable schedulers, the schedulability of a periodic task system can often

be determined by simulating the scheduler for a finite duration, assuming each job executes for its WCET.

To ensure the validity of such a conclusion, the simulation must explore all system states reachable under

worst-case conditions. Schedulers that produce repetitive (also called cyclic or periodic) schedules in the

30

Time

Transient Phase Steady Phase

τ1,1 τ1,2 τ1,3 τ1,4

τ2,1 τ2,2 τ2,3 τ2,4

τ3,1 τ3,2 τ3,3 τ3,4

τ4,1 τ4,2 τ4,3 τ4,4

τ1

τ2

τ3

τ4

0 5 10 15

Release

Deadline

Completion

Execution

Figure 2.3: Illustration of schedule repetition.

worst case can guarantee this. Such schedules consist of two phases: a transient phase at the beginning,

followed by a steady phase.

Example 2.3. Consider a periodic task system with four tasks scheduled on three processors using G-EDF.

Each task has a period of 4.0, a WCET of 3.0, and an offset of 0.0. Figure 2.3 shows a G-EDF schedule

S of the task system, assuming every job executes for its WCET. In S, the schedule during the interval

[8, 12) repeats during [12, 16). Thus, the transient and steady phases in S occur during [0, 8) and [8, 12),

respectively. ◀

Since the job release patterns repeat after every hyperperiod, the steady phase of a schedule usually spans

a number of hyperperiods. The simulation interval defines the time window within which schedule repetition

begins, as formally defined below.

Definition 2.1 (Simulation Interval). For a schedule S of a periodic task system, a simulation interval is a

finite time interval [0, a) such that S starts to repeat in a cycle by time a, i.e., there exists an ℓ ≤ a such that

the schedule in S during [a − ℓ, a) is identical to the schedule in S during [a + kℓ, a + (k + 1)ℓ) for any

integer k ≥ 0. The length of the interval [0, a) is called the simulation length. ◀

A simulation interval in a schedule S is exact if and only if there is no simulation interval of smaller

simulation length in S. Thus, the interval [0, 12) is an exact simulation interval in Figure 2.3. The interval

[0, 14) is also a simulation interval in Figure 2.3, but it is not exact. For a sustainable scheduler, the worst-case

response time (i.e., the exact response-time bound) of each task can be determined by simulating the schedule

for a simulation interval assuming every job executes for its WCET. Since scheduling decisions are typically

made in polynomial time, the efficiency of a simulation-based test can be measured by the simulation length,

which is typically an integer multiple of the system’s hyperperiod plus the largest task offset. Note that a

31

simulation interval may not always exist. For example, a schedule of a system that is not SRT-schedulable

under a scheduler may not have any simulation interval.

A simulation-based exact test for FP scheduling of periodic task systems on uniprocessors was introduced

by Leung and Merrill [Leung and Merrill, 1980], and later tightened by Goossens and Devillers [Goossens

and Devillers, 1997]. Goossens and Devillers also extended the result of [Leung and Merrill, 1980] to

arbitrary-deadline periodic tasks under FP and EDF scheduling [Goossens and Devillers, 1999]. The exact

simulation interval corresponding to the test was determined in [Grolleau and Choquet-Geniet, 2002]. These

works assume no preemption or context-switch delays; to account for such overheads, task WCETs must be

inflated before simulation. More recently, simulation intervals have been devised that explicitly account for

preemption delays and context-switch costs on uniprocessors [Goossens and Masson, 2022, 2024]. However,

these simulation intervals cannot be used for exact schedulability tests. In all of these works, the number of

hyperperiods in the simulation intervals is pseudo-polynomial.

Simulation-based exact tests have also been studied for the JLFP scheduling of periodic tasks on

multiprocessors. Cucu and Goossens gave an exact test for constrained-deadline periodic systems on uniform

multiprocessors under G-FP schedulers [Cucu and Goossens, 2006]. This test requires simulation for a

pseudo-polynomial number of hyperperiods. For G-FP scheduling of arbitrary-deadline periodic systems,

Cucu-Grosjean and Goossens gave a simulation-based exact test assuming identical multiprocessors [Cucu-

Grosjean and Goossens, 2007], which was later extended to unrelated multiprocessors [Cucu-Grosjean and

Goossens, 2011]. The number of hyperperiods in the derived simulation interval is also pseudo-polynomial.

Subsequently, a class of schedulers, called deterministic and memoryless schedulers, was shown to generate

schedules with simulation intervals (i.e., repetitive schedules), assuming all jobs of a task execute for the

same duration [Grolleau et al., 2013]. Such schedulers make scheduling decisions deterministically based on

solely the current state of the system. Baro et al. utilized the simulation interval from [Cucu-Grosjean and

Goossens, 2011] to construct scheduling tables for constrained-deadline systems with simple precedence

constraints [Baro et al., 2012]. Nélis et al. provided an exact schedulability test for constrained-deadline

task systems on identical multiprocessors under any JLFP scheduler that requires simulation for a pseudo-

polynomial number of hyperperiods [Nélis et al., 2013]. Goossens et al. later derived simulation intervals

containing an exponential number of hyperperiods for arbitrary-deadline systems with complex features such

as precedence constraints, non-preemptivity, etc., under deterministic and memoryless schedulers [Goossens

et al., 2016]. Table 2.1 summarizes these results on multiprocessor simulation intervals.

32

Table 2.1: Multiprocessor simulation intervals. D&M denotes deterministic and memoryless schedulers.

Work
Processor

Model Deadlines Scheduler
Simulation

length in hy-
perperiods

[Cucu and Goossens, 2006] Uniform Constrained G-FP Pseudo-polynomial

[Cucu-Grosjean and Goossens, 2007] Identical Arbitrary G-FP Pseudo-polynomial

[Cucu-Grosjean and Goossens, 2011] Unrelated Arbitrary G-FP Pseudo-polynomial

[Baro et al., 2012] Identical Constrained Offline Pseudo-polynomial

[Nélis et al., 2013] Identical Constrained JLFP Pseudo-polynomial

[Goossens et al., 2016] Identical Arbitrary D&M Exponential

This dissertation Identical Arbitrary GEL Pseudo-polynomial

Reachability-based methods. Exact schedulability tests for sporadic task systems are typically based

on reachability analysis over a graph or automaton that captures all possible system states. Baker and

Cirinei presented an exact schedulability test for arbitrary-deadline sporadic tasks under G-EDF and G-FP

scheduling [Baker and Cirinei, 2007]. The test relies on a brute-force exploration of a finite automaton

that encodes all possible system behaviors. The size of this automaton can be exponential, resulting in an

exponential-time exact test. However, Geeraerts et al. showed that the formulation in [Baker and Cirinei,

2007] is PSPACE-complete and applied antichain techniques to improve the test’s scalability [Geeraerts

et al., 2013]. Guan et al. proposed a timed-automata-based exact analysis for periodic tasks under G-FP

scheduling [Guan et al., 2007], while Sun and Lipari developed an exact test for G-FP schedulers using

reachability analysis on linear hybrid automata [Sun and Lipari, 2016]. All these exact schedulability tests

suffer from limited scalability, e.g., the test in [Sun and Lipari, 2016] can handle systems with at most

seven tasks and four processors on their experiment platform. Schedule abstraction graphs have recently

been introduced, which can be used for exact analysis of non-preemptive uniprocessor systems with release

jitters [Nasri and Brandenburg, 2017]. Recently, this technique has been extended for global preemptive

and non-preemptive JLFP scheduling for jobs with release jitters [Nasri et al., 2018; Gohari et al., 2024].

However, the extensions to multiprocessor scheduling are only sufficient tests.

Contribution of this dissertation. In this dissertation, we give a simulation-based exact schedulability test

for periodic tasks on identical multiprocessors under GEL schedulers. The simulation length is bounded by

a pseudo-polynomial number of hyperperiods. The most comparable prior works are [Nélis et al., 2013]

33

and [Goossens et al., 2016] (see Table 2.1). Although Nelis et al. gave a simulation interval containing a

pseudo-polynomial number of hyperperiods, it only applies to constrained-deadline systems. In contrast,

although Goossens et al. considered a wider class of schedulers, the simulation length contains an exponential

number of hyperperiods.

2.1.3 SRT Response-Time Analysis

In this section, we review prior work on response-time analysis of SRT systems. We first discuss work

assuming identical multiprocessors, followed by work on heterogeneous multiprocessors.

Identical multiprocessors. Response-time bounds that apply to any SRT-feasible systems have been mostly

studied under G-EDF. Devi and Anderson gave the first such bound for implicit-deadline sporadic tasks under

preemptive G-EDF on identical multiprocessors [Devi and Anderson, 2005]. Later, the bound was extended

for sporadic tasks with an arbitrary number of non-preemptive sections [Devi and Anderson, 2008]. For fully

utilized task systems, the response-time bound by Devi and Anderson increases with respect to the number

of processors. Erickson et al. improved and extended this bound to arbitrary-deadline sporadic systems

by introducing an analysis technique called the compliant vectors analysis (CVA) [Erickson et al., 2010].

The current best-known G-EDF response-time bound on identical multiprocessors, called the harmonic

bound, was given by Valente [Valente, 2016]. Although the harmonic bound also increases with respect

to the number of processors for fully utilized systems, in the worst case, it increases logarithmically with

respect to the number of processors compared to the linear increase in [Devi and Anderson, 2005]. The time

complexity to compute the harmonic bound is exponential. Leoncini et al. improved the efficiency of the

algorithm for computing the harmonic bound using the branch-and-bound technique [Leoncini et al., 2019].

The SRT-optimality and corresponding response-time bounds have also been studied under non-G-EDF

global schedulers. Leontyev and Anderson proved a response-time bound similar to the one in [Devi and

Anderson, 2005] for sporadic tasks under G-FIFO [Leontyev and Anderson, 2007]. Later, the response-time

bounds in [Devi and Anderson, 2005] and [Leontyev and Anderson, 2007] were generalized for sporadic

tasks under window-constrained schedulers [Leontyev and Anderson, 2010]. Erickson et al. achieved a

tighter bound under GEL schedulers using CVA [Erickson and Anderson, 2012; Erickson et al., 2014].

For fully utilized systems, this bound also increases with the number of processors. Erickson et al. also

introduced the global-fair-lateness (G-FL) scheduler and showed that G-FL has the tightest bound among all

34

GEL schedulers under CVA. Recently, a tight response-time bound was derived for any work-conserving

scheduling of periodic task systems where all tasks have the same period and the same WCET [Buzzega et al.,

2023; Buzzega and Montangero, 2024]. This bound consists only of the task WCET and period. Although

the G-FP scheduler is not SRT-optimal when jobs of the same task cannot execute concurrently, Voronov et

al. showed that the G-FP scheduler is SRT-optimal when unrestricted parallelism is allowed among jobs of

the same task [Voronov et al., 2021a]. Unrestricted parallelism is also advantageous for G-EDF scheduling.

When any two jobs of a task can execute in parallel, response-time bounds under G-EDF do not increase

with the processor count for fully utilized systems [Erickson and Anderson, 2011].

Heterogeneous multiprocessors. Yang and Anderson showed that non-preemptive work-conserving sched-

ules, including non-preemptive G-EDF, are not SRT-optimal on uniform multiprocessors [Yang and Anderson,

2015b]. Later, they proved the SRT-optimality of preemptive G-EDF for scheduling sporadic tasks on uniform

multiprocessors [Yang and Anderson, 2017]. This required a refinement of G-EDF, called the Ufm-EDF,

in which earlier-deadline jobs are scheduled on higher-speed processors. The response-time bound given

by Yang and Anderson grows exponentially with the processor count. Tang et al. improved this result by

providing a bound that is polynomial in both task parameters and processor count [Tang et al., 2019]. This

bound is also applicable to G-EDF scheduling of sporadic tasks on identical multiprocessors with affinity

masks, which are per-task bit vectors that specify the processors on which a task may execute [Tang et al.,

2019]. The required refinement of preemptive G-EDF to ensure SRT-optimality on identical multiprocessors

with affinity masks causes heavy migrations. Tang and Anderson showed that an alternative refinement of

preemptive G-EDF with fewer migrations, as well as non-preemptive G-EDF, are not SRT-optimal [Tang and

Anderson, 2020]. However, they showed that window-constrained scheduling on identical multiprocessors

with affinity masks is SRT-optimal [Tang and Anderson, 2020]. Tang et al. gave another refinement of

G-EDF for unrelated multiprocessors, called Unr-EDF, and gave a response-time bound that applies with a

restriction on per-task utilizations and total utilization [Tang et al., 2021]. Later, the result was extended to

window-constrained schedulers [Tang, 2024].

Contribution of this dissertation. In this dissertation, we give a tight (within a constant factor) response-

time bound for pseudo-harmonic periodic task systems under preemptive GEL schedulers on identical

multiprocessors. This bound can be computed in polynomial time. For such systems, we also give an exact

35

Table 2.2: Response-time bounds of SRT systems on identical multiprocessors.

Work
Task

Model Restriction Scheduler Tight Exact

[Devi and Anderson,
2005]

Sporadic None G-EDF No No

[Leontyev and
Anderson, 2007]

Sporadic None G-FIFO No No

[Leontyev and
Anderson, 2010]

Sporadic None Window-
constrained

No No

[Erickson et al., 2010] Sporadic None G-EDF No No

[Erickson et al., 2014] Sporadic None GEL No No

[Valente, 2016] Sporadic None G-EDF No No

[Buzzega and
Montangero, 2024]

Periodic Same period and WCET
Work-

conserving
Yes Yes

This dissertation Periodic Pseudo-harmonic GEL Yes Yes

response-time bound that can be computed in pseudo-polynomial time. Table 2.2 shows a comparison of our

work with relevant prior work.

2.2 DAG Tasks

A DAG-based task system consists of N DAG task G1, G2, . . . , GN . To simplify the notation, we omit

the DAG index (in the superscript) when discussing a single DAG. Each DAG task G has n nodes that

represent sequential tasks {τ1, τ2, . . . , τn}. The WCET of node τi is Ci. A directed edge from τi to τk

represents a precedence constraint between the predecessor task τi and the successor task τk. The set of

predecessors of τi is denoted by pred(τi). Each DAG task G has a unique source task τ1 with no incoming

edges and a unique sink task τn with no outgoing edges. A DAG with multiple sources/sinks can be supported

by adding a “virtual” source and sink, each with a WCET of zero, which connects with multiple sources and

sinks, respectively.

Each DAG task G has a period T . A sporadic (resp., periodic) DAG G releases DAG jobs so that

successive DAG jobs have a minimum (resp., exact) separation time of T time units. The jth DAG job of G

is denoted by Gj . The release time and completion time of Gj are denoted by rj and fj , respectively. The

utilization of a task τi and DAG G are ui = Ci/T and U =
∑n

i=1 ui, respectively. The total utilization of all

36

3τ1

2τ2

4

τ3

3

τ5

2 τ7

3 τ4

1 τ6

(a)

Time

τ1 τ2

τ3 τ4

τ6 τ5 τ7π1

π2

0 5 10

(b)

Figure 2.4: (a) A DAG G (numbers inside circles denote WCETs). (b) A schedule of G on two processors
where τ3 executes for less than its WCET.

DAGs, denoted by Utot, is the sum of all per-DAG utilizations. The DAG job Gj consists of a job τi,j for

each task τi in G. The release time and finish time of τi,j are denoted by r(τi,j) and f(τi,j), respectively. The

source task τi releases its jth job when Gj is released. The jth job of each non-source task is released once

the jth jobs of all of its predecessor tasks finish. Thus, the release time of a job τi,j is

r(τi,j) =


rj if τi is a source task

maxτk∈pred(τi){f(τk,j)} otherwise.
(2.2)

DAG job Gj finishes execution when the jth job τn,j of the sink node finishes, i.e., fj = f(τn,j). The

response time of τi,j is f(τi,j)− r(τ1,j). Task τi’s response time is supj{f(τi,j)− r(τ1,j)}. Gj’s response

time equals τn,j’s response time. G’s response time equals τn’s response time.

Example 2.4. Figure 2.4(a) depicts a DAG task G. Tasks τ1 and τ7 are the source and sink tasks of G,

respectively. The predecessor tasks of τ6 are τ2 and τ3.

Figure 2.4(b) depicts a schedule of a DAG job of G on two processors π1 and π2. In this schedule, the

DAG job is released at time 0. Thus, by (2.2), the source node’s job is also released at time 0. The jobs of τ2,

τ3, and τ4 are released at time 3 when the job of τ1 completes. The job of τ6 is released at time 5, as the jobs

of τ2 and τ3 complete execution at times 5 and 4, respectively. ◀

In the rest of this section, we first discuss the complexities involved in scheduling and analyzing DAG

tasks. Next, we review common DAG scheduling approaches. Finally, we discuss HRT- and SRT-feasibility,

existing work on HRT-schedulability analysis, and SRT response-time analysis for DAG tasks.

37

2.2.1 Complexities in DAG Scheduling

When multiple DAG tasks are scheduled on a shared multiprocessor platform, tasks from different DAGs

can interfere with each other, delaying each other’s execution. A job τvi,j is said to interfere with another job

τwk,ℓ if the execution of τvi,j can delay the execution of τwk,ℓ. We use these jobs, τvi,j and τwk,ℓ, to characterize

different types of interference in the following.

Intra-DAG interference. Since a DAG can consist of multiple sequential tasks, a job of a DAG can interfere

with other jobs of the same DAG. This is called intra-DAG interference. Intra-DAG interference refers to the

case where v = w holds. Intra-DAG interference can be categorized into two types.

• Intra-instance interference. Intra-instance interference refers to the interference between jobs that

belong to the same DAG job. This corresponds to the case where v = w and j = ℓ.

• Inter-instance interference. Inter-instance interference refers to the interference between jobs from

different DAG jobs of the same DAG. This corresponds to the case where v = w and j ̸= ℓ. Inter-

instance interference occurs in systems with arbitrary-deadline HRT DAG tasks or SRT DAG tasks.

Inter-DAG interference. When a job of one DAG interferes with a job of another DAG, it is called inter-DAG

interference. Thus, inter-DAG interference refers to the case where v ̸= w.

Self-dependencies. A job’s execution can also be delayed if it requires data from a prior job of the same task,

but the prior job has not completed yet. Such a scenario can happen under the rp model when the task does

not have unrestricted parallelism. One might think that self-dependencies are special cases of inter-instance

interference described above, i.e., the case with v = w, i = k, and j ̸= ℓ. However, we characterize

them differently due to schedule-related scenarios that arise due to self-dependencies but not due to such

interference. For example, the number of busy processors can differ when interference- or dependency-related

delay of execution occurs. When a job’s execution is delayed due to interfering workload, all processors

become busy during that delay. In contrast, if a job’s execution is delayed due to self-dependencies, then

some processors may remain idle during the delay. This can be seen in Figure 2.1(a), where τi,8 cannot

execute due to self-dependencies during [60, 62), despite one processor may be idle.

2.2.2 DAG Scheduling Approaches

We now discuss common DAG scheduling approaches.

38

Table 2.3: Interference and dependencies under global scheduling of multiple DAGs.

Model

HRT/SRT
and

Deadline

Intra-DAG

Inter-DAG Self-DependenciesIntra-
Instance

Inter-
Instance

Unrestricted
parallelism

HRT, Constrained Yes No Yes No

HRT, Di > Ti Yes Yes Yes No

SRT Yes Yes Yes No

Restricted
parallelism

HRT, Constrained Yes No Yes No

HRT, Di > Ti Yes Yes Yes Yes

SRT Yes Yes Yes Yes

Decomposition-based scheduling. Under decomposition-based scheduling, each DAG is decomposed into a

set of sequential tasks, which are scheduled independently. The decomposition is typically performed by

assigning each node of the DAG an offset, representing the release time of a node’s job relative to the release

time of the corresponding DAG job. Such offset assignments ensure that all jobs of predecessor nodes of

a node τi complete before a job of τi is released. Additionally, each node is assigned a relative deadline.

Decomposition-based scheduling was studied in [Liu and Anderson, 2010; Saifullah et al., 2011; Qamhieh

et al., 2013, 2014; Saifullah et al., 2014; Jiang et al., 2016; Yang et al., 2016; Pathan et al., 2018; Amert et al.,

2019; Jiang et al., 2020; Guan et al., 2021, 2022].

Non-decomposition-based global scheduling. Under this approach, tasks of all DAGs are scheduled under

a global scheduler without any decomposition. A hierarchical prioritization approach is often used. At

the top level, jobs of different DAGs are prioritized according to inter-DAG prioritization rules. At the

second level, jobs of the same DAG are prioritized according to intra-DAG prioritization rules. Commonly,

FP or EDF is used for inter-DAG prioritization. When FP is used, jobs of a higher-priority DAG always

have higher priorities than jobs of a lower-priority DAG. Under EDF, each DAG job’s absolute deadline

is used to define the priorities of the jobs of the DAG. Common approaches for intra-DAG prioritization

include list scheduling, prioritized list scheduling, etc. Work on non-decomposition-based global scheduling

includes [Graham, 1969; Baruah et al., 2012; Li et al., 2013; Bonifaci et al., 2013b; Baruah, 2014; Parri et al.,

2015; He et al., 2019; Wang et al., 2019; Fonseca et al., 2019; Sun et al., 2020; He et al., 2021, 2022; Ueter

et al., 2023]. Table 2.3 shows different interference and dependencies present under decomposition-based

and non-decomposition-based global scheduling of DAG tasks.

39

Partitioned scheduling. Similar to partitioned scheduling of sequential tasks, each task of a DAG task is

statically assigned to a single processor under partitioned scheduling. Schedulability analysis for partitioned

scheduling of DAG tasks is typically performed by modeling the execution of a DAG task on a given processor

as segments of execution and self-suspension. Partitioned scheduling of DAG tasks was studied in [Fonseca

et al., 2016; Baruah, 2020]. A variant of partitioned scheduling of DAGs was considered in [Shi et al., 2024].

Federated scheduling. Under federated scheduling, each DAG is classified into either heavy or light. The

utilization1 of a heavy DAG (resp., light DAG) is larger than (resp., at most) 1.0. Each heavy DAG is

scheduled on a set of dedicated processors. In contrast, all light DAGs share a common set of processors and

are each scheduled as sequential tasks. On their allocated processors, heavy DAGs may be scheduled using

decomposition-based, non-decomposition-based global, or partitioned scheduling approaches. Since heavy

DAGs are isolated from one another, federated scheduling avoids inter-DAG interference, which enables

more accurate response-time bounds. However, allocating processors to heavy DAGs may cause capacity

loss: a DAG with utilization a+ ϵ, for integer a and ϵ→ 0, requires at least a+ 1 processors. Existing work

on federated scheduling and its variants includes [Li et al., 2014; Baruah, 2015a,b; Jiang et al., 2017, 2021;

Ueter et al., 2018; Guan et al., 2023].

2.2.3 Feasibility Results

Determining whether a sporadic DAG task is HRT-feasible on an identical multiprocessor platform is

NP-hard in the strong sense, regardless of whether preemption is allowed or not [Ullman, 1975]. When

multiple DAG tasks are considered, intractability results pertaining to the scheduling of both a single sporadic

DAG task (restricting the number of DAG to one) and a set of sporadic sequential tasks (restricting per-DAG

node count to one) on multiprocessors are applicable. Therefore, intractability and impossibility results

from [Eisenbrand and Rothvoß, 2010; Ekberg and Yi, 2015; Fisher, 2007] are applicable to the scheduling of

multiple DAGs. Recently, it has been shown that determining the HRT-feasibility of a set of constrained-

deadline sporadic DAG tasks is PSPACE-hard [Bonifaci and Marchetti-Spaccamela, 2025]. This result rules

out the possibility of formulating an ILP to solve this problem efficiently.

However, the SRT-feasibility of a set of DAG tasks on M identical multiprocessors can be determined in

polynomial time even when self-dependencies are specified under then rp model, as shown below.

1For arbitrary-deadline DAG tasks, a term called density is used to distinguish between heavy and light DAGs.

40

Theorem 2.1 ([Amert et al., 2019]). A set of N sporadic DAG tasks is SRT-feasible on M identical

multiprocessors if and only if ∀ i, v : uvi ≤ P v
i and Utot ≤M hold.

For the special case of unrestricted parallelism (P v
i =∞), the condition is only Utot ≤M (there is no

explicit restriction on uvi) [Yang et al., 2016]. In contrast, for the no-parallelism case, the condition is uvi ≤ 1

and Utot ≤M [Liu and Anderson, 2010].

2.2.4 HRT-Schedulability Analysis

The HRT-schedulability of sporadic DAG tasks has been studied under various schedulers. Most of

these analyses provide sufficient schedulability tests or non-exact response-time bounds. Several common

analysis techniques are used to derive such tests. One technique derives a response-time upper bound for a

DAG task by bounding the interfering workload that affects the jobs along any path (an ordered sequence

of nodes where successive nodes are connected by edges) in the DAG during a problem window. Another

technique evaluates a non-optimal scheduler by comparing it to a hypothetical optimal scheduler using the

concepts of capacity augmentation or resource augmentation bounds. Finally, under decomposition-based

scheduling, individual response-time bounds for each task are typically derived and then aggregated to obtain

a response-time bound for the entire DAG task.

Constrained-deadline systems. Constrained-deadline HRT systems do not have any inter-instance interfer-

ence or self-dependencies. Thus, schedulability tests and response-time analyses of constrained-deadline

DAG tasks typically require bounding intra-instance interference and inter-DAG interference. Under federated

scheduling of constrained-deadline DAG tasks, the need to consider inter-DAG interference is also obviated.

Eliminating these complex features often enables more accurate response-time bound computation. Graham

gave a path-based analysis for a DAG task by upper bounding the workload that can interfere with jobs on a

path under any work-conserving scheduler [Graham, 1969]. Recently proposed multi-path bounds improve

Graham’s bound by considering multiple paths of the DAGs [He et al., 2022; Ueter et al., 2023]. Some work

also considered assigning node priorities to improve Graham’s bound [He et al., 2019; Zhao et al., 2020; He

et al., 2021; Chang et al., 2022]. Other work on constrained-deadline HRT DAG tasks provided schedulability

tests by deriving speed-up factors or resource-augmentation bounds [Bonifaci et al., 2013b; Li et al., 2013;

Baruah, 2014]. Decomposition-based analysis for constrained-deadline DAG tasks has also been studied

under G-EDF and G-FP schedulers [Qamhieh et al., 2013; Saifullah et al., 2014; Jiang et al., 2016].

41

Arbitrary-deadline systems. For arbitrary-deadline HRT systems, most work assumes no self-dependencies

(i.e., unrestricted parallelism) [Yang et al., 2016; Ueter et al., 2018; Wang et al., 2019; Guan et al., 2023].

Schedulability tests for multiple DAG tasks under G-EDF and G-FP schedulers are given in [Baruah et al.,

2012; Bonifaci et al., 2013b]. Other work determined response-time bounds of multiple DAG tasks by

considering execution along a path of each DAG [Parri et al., 2015; Wang et al., 2019; Ueter et al., 2023].

Fonseca et al. developed such a path-based approach to determine response-time bounds for multiple arbitrary-

deadline DAG tasks [Fonseca et al., 2019]. However, their approach required that a DAG job not commence

execution before all previous DAG jobs finish, leading to capacity loss.

2.2.5 SRT Response-Time Analysis

Prior work on SRT scheduling and corresponding analysis has primarily focused on SRT-optimal

schedulers. The only known SRT-optimal scheduler is a decomposition-based approach called the offset-

based scheduler. Under this scheduler, a DAG is converted into an “equivalent” set of independent sporadic

tasks by assigning appropriate task offsets that preserve precedence constraints. Unlike the offsets in periodic

sequential tasks, the offset of τvi , denoted by Ov
i , in offset-based scheduling represents the relative release

time of the job τvi,j with respect to the release time of the corresponding source task’s job τv1,j . Accordingly,

under offset-based scheduling, (2.2) is modified as follows.

r(τvi,j) = rvj +Ov
i . (2.3)

To ensure that an offset assignment can implicitly satisfy precedence constraints, a response-time bound Rv
i

of each task τvi is computed, assuming that all tasks are independent, sporadic, have implicit deadlines, and

scheduled under G-EDF.2 These can be computed by any response-time analysis for sequential tasks under

G-EDF, as described in Section 2.1.3. After computing such values, task offsets are determined as follows.

Ov
i =


0 if τi is a source task

maxτvk∈pred(τ
v
i)
(Ov

k +Rv
k) otherwise.

(2.4)

2Other SRT-optimal schedulers for independent sporadic tasks can also be used.

42

τ11

τ12 τ13

τ14

(a)

Time

τ11
O1

1 = 0

τ12 O1
2 = R1

1

τ13 O1
3 = R1

1

τ14 O1
4 = max{R1

1 +R1
2, R

1
1 +R1

3}

ExecutionRelease

(b)

Figure 2.5: (a) A DAG task and (b) an offset-based schedule of the DAG.

Liu and Anderson first showed that job releases satisfying (2.3) and (2.4) ensure that all precedence

constraints are respected when tasks have no parallelism (P v
i = 1)[Liu and Anderson, 2010]. Later, the same

offset assignment approach was shown to be valid for both unrestricted parallelism and arbitrary restricted

parallelism [Yang et al., 2016; Amert et al., 2019]. Note that the response-time bounds used in (2.4) must be

computed assuming the appropriate parallelization levels. Finally, the response time of a DAG task can be

bounded by summing the sink node’s offset and its response-time bound, i.e., Ov
nv +Rv

nv .

Example 2.5. Figure 2.5 shows a DAG task and its offset-based schedule. Node τ11 ’s offset is 0 according

to (2.4). Since τ12 and τ13 have a predecessor node τ11 , the offsets of both τ12 and τ13 are R1
1. Since the

predecessors of τ14 are τ12 and τ13 , the offset of τ14 is max{O1
2+R

1
2, O

1
3+R

1
3} = max{R1

1+R
1
2, R

1
1+R

1
3}.◀

The above scheduling and its analysis ensure bounded response times for all SRT-feasible DAG task

systems. This is because the analysis mostly relies on SRT response-time analysis of sequential tasks under

G-EDF, which does not cause any capacity loss. However, the offset-based scheduling can delay a job’s

release due to the introduction of offsets. Such delays can be avoided with the concept of early releasing,

which releases jobs by (2.2) instead of (2.3). Since most response-time bounds of independent sporadic

tasks under G-EDF remain valid with early releasing, the computed response-time bound of a DAG under

offset-based scheduling still applies when early releasing is allowed.

Unfortunately, reducing the response-time bound of a DAG computed under offset-based scheduling

relies on improving response-time analysis of the corresponding independent sporadic task model. As

43

described in Section 2.1.3, the known SRT response-time analyses of sporadic tasks are pessimistic, and a

tight bound is still unknown. With offsets defined using such pessimistic bounds, any improvement, even if

an exact analysis can be performed, would be marginal. Other than offset-based scheduling, response-time

analysis of DAGs with unrestricted parallelism was studied under some non-SRT-optimal schedulers [Liu and

Anderson, 2011; Jiang et al., 2018].

Contribution of this dissertation. In this dissertation, we propose a server-based scheduling algorithm

for periodic DAG tasks under the rp model. Server-based scheduling is a decomposition-based approach

that uses the concept of servers or reservations, which are equivalent to independent periodic tasks, to

provide execution budgets to jobs. A job can execute at any time instant if it has a non-zero budget and its

server has sufficiently high priority. The use of servers, instead of offsets, enables the computation of exact

response-time bounds for DAG tasks using simulation-based techniques. Note that response-time analysis for

SRT DAG tasks under the rp model must account for all complexities listed in Table 2.3.

2.2.6 Other DAG Models

We now briefly describe some other DAG task models that generalize the one introduced in Section 2.2.

Conditional DAG tasks. In the conditional DAG task model, a DAG task can contain conditional nodes.

These nodes represent the execution of conditional (e.g., if-then-else) constructs in parallel real-time code.

Thus, not all nodes may have a job in an instance of a conditional DAG task. Due to the presence of

conditional nodes, determining the worst-case execution requirement of a DAG job requires considering

different execution scenarios along various branches. Work on conditional DAG tasks includes [Fonseca

et al., 2015; Baruah et al., 2015; Melani et al., 2015; Parri et al., 2015; Baruah, 2021; He et al., 2023a].

Typed DAG tasks. Typed DAG task systems are used to model the execution of DAG tasks on a heteroge-

neous compute platform consisting of multiple compute elements (CEs). In a typed DAG task, each node has

a type associated with it. The type refers to a CE on which the node’s jobs can execute. Jaffe first considered

scheduling DAGs on heterogeneous platforms [Jaffe, 1980]. Later work improved this bound using less

pessimistic interfering workload estimations [Han et al., 2019; He et al., 2023b]. Chang et al. considered the

scheduling of typed DAGs by a JLDP scheduling algorithm [Chang et al., 2020]. Lin et al. gave a type-aware

federated scheduling algorithm on two-CE platforms that allows the sharing of processors of a CE among

DAGs that are light with respect to a CE [Lin et al., 2023]. Other work considered scheduling SRT DAGs

44

on heterogeneous platforms [Yang et al., 2016] and graph-restructuring techniques [Serrano and Quiñones,

2018].

Multi-rate DAG tasks. In a multi-rate DAG, different nodes of the same DAG may have different periods.

Typically, each DAG node releases its jobs periodically, and data dependencies are resolved using the outputs

of the most recently completed predecessor jobs. Much of the existing work on multi-rate DAG tasks

relies on converting all DAGs into a set of single-rate DAG tasks. Recent work on multi-rate DAG tasks

includes [Forget et al., 2010; Verucchi et al., 2020; Sun et al., 2023; Li et al., 2024].

2.3 Suspension-Based Mutex Locks

In this section, we review concepts and prior work related to suspension-based real-time locking

protocols. For simplicity, we consider a sequential task system consisting of N implicit-deadline sporadic

tasks {τ1, τ2, . . . , τN}. These tasks are scheduled on M identical processors under a global JLFP scheduler.

Resource model. We assume that the system has a set {ℓ1, . . . , ℓnr} of shared resources. For now, we limit

attention to mutex sharing, although other notions of sharing will be considered later in Chapter 5. Under

mutex sharing, a resource ℓq can be held by at most one job at any time. When a job τi,j requires a resource

ℓq, it issues a request R for ℓq. R is satisfied as soon as τi,j holds ℓq, and completes when τi,j releases ℓq. R

is active from its issuance to its completion. τi,j must wait untilR can be satisfied if it is held by another job.

It may do so either by busy-waiting (or spinning) in a tight loop, or by being suspended by the OS untilR is

satisfied. We assume that if a job τi,j holds a resource ℓq, then it must be scheduled to execute.3 A resource

access is called a critical section (CS).

We assume that each job can request or hold at most one resource at a time, i.e., resource requests

are non-nested. We let N q
i denote the maximum number of times a job of task τi requests ℓq, and let

Lq
i denote the maximum length of such a request. We define Lq

i to be 0 if N q
i = 0. Finally, we define

Lq
max = max1≤i≤n{Lq

i }, and Lmax = max1≤q≤nr{L
q
max}, and let Lq

sum,h be the sum of the h largest Lq
i

values.

Example 2.6. Figure 2.6 illustrates the timeline of a resource requestR. Job τi,j issuesR at time ti. After

issuingR, the job is suspended, as the resource is held by some other jobs. At time ts, the resource is granted

3This is a common assumption in work on synchronization. It is needed for shared data, but may be pessimistic for
other shared resources such as I/O devices.

45

Time

τi,j

ti ts tc

Issuance Satisfaction Completion

Release Deadline Completion Execution CS Suspenstion

Figure 2.6: Timeline of a resource request.

to τi,j andR is satisfied. During [ts, tc), the job executes its CS. The requestR completes at time tc when

τi,j releases the resource. ◀

Priority inversions. Pi-blocking occurs when a job is delayed and this delay cannot be attributed to higher-

priority demand for processing time. On multiprocessors, the formal definition of pi-blocking actually

depends on how schedulability analysis is done. Of relevance to suspension-based locks, schedulability

analysis may be either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [Brandenburg and

Anderson, 2010a]. Under s-oblivious analysis, suspension time is analytically treated as computation time.

In contrast, under s-aware analysis, suspension times are explicitly considered in schedulability analysis.

Definition 2.2 (S-oblivious pi-blocking [Brandenburg and Anderson, 2010a]). Under s-oblivious schedulabil-

ity analysis for a global scheduler, a job τi,j incurs s-oblivious pi-blocking at time t if τi,j is pending but not

scheduled and fewer than M higher-priority jobs are pending, where a job is considered pending at any time

during [r(τi,j), f(τi,j)). ◀

By Definition 2.2, a job suffers s-oblivious pi-blocking under global scheduling if and only if it is one of

the M highest-priority pending jobs but not scheduled.

Example 2.7. Figure 2.7 illustrates a G-EDF schedule of three jobs τ1,1, τ2,1, and τ3,1 on two processors.

Job τ3,1 acquires resource ℓ at time 2. Job τ2,1 issues a request for ℓ at time 3, and it is suspended from

time 3 to time 6. Since there is only one job with higher priority than τ2,1 during time interval [3, 4), by

Definition 2.2, τ2,1 incurs s-oblivious pi-blocking during this time interval. At time 4, job τ1,1, which has

higher priority than both τ2,1 and τ3,1, is released. Since there are M = 2 jobs with higher-priority than τ2,1

during time interval [4, 6), τ2,1 does not incur s-oblivious pi-blocking during this time interval. ◀

In contrast, s-aware pi-blocking is defined as follows.

46

Time

τ1,1

τ2,1

τ3,1

0 5 10 15

CS
Normal Execution

Suspended but not s-oblivious pi-blocked
s-oblivious pi-blocked

Lock Release
Request Issuance
Completion
Deadline
Release

Figure 2.7: A schedule illustrating s-oblivious pi-blocking.

Definition 2.3 (S-aware pi-blocking [Brandenburg and Anderson, 2010a]). Under s-aware schedulability

analysis for a global scheduler, a job τi,j incurs s-aware pi-blocking at time t if τi,j is pending but not

scheduled and fewer than M higher-priority jobs are ready. Here, a job is ready when it is pending but not

suspended. ◀

In Figure 2.7, job τ2,1 is suspended during the interval [4, 5), but both τ1,1 and τ2,1 are ready during

this interval. Thus, τ2,1 is not s-aware pi-blocked in [4, 5). Since τ1,1 is suspended at time 5, only one

higher-priority job is ready at that time. Therefore, τ2,1 is s-aware pi-blocked during [5, 6).

Blocking complexity. Request lengths are unavoidable in assessing maximum pi-blocking, as a request-

issuing job may have to wait for a current resource holder to complete before its request can be satisfied. As

such, maximum pi-blocking bounds are usually expressed as an integer multiple of the maximum request

length, i.e., the number of requests that are satisfied while a resource-requesting job is pi-blocked.

Progress mechanism. Any real-time locking protocol needs to ensure a resource-holding job’s progress

whenever a job waiting for the same resource is pi-blocked, for otherwise, the maximum per-job pi-blocking

can be very large or even unbounded. For example, consider a scenario where the lowest-priority job is

holding a resource while the highest-priority job is waiting for the same resource. Suppose that all other tasks

have ready jobs with higher priorities than the resource-holding job, but these jobs do not request the same

resource. Without any mechanism to ensure the resource-holding job’s progress, if jobs are preemptively

scheduled based on their priorities, then the resource-holding job would be preempted by a higher-priority job.

Consequently, the highest-priority job would need to wait until all other jobs complete execution, causing a

very large pi-blocking time.

Therefore, to ensure that the maximum pi-blocking is reasonably bounded, real-time locking protocols

employ progress mechanisms that force the execution of resource-holding jobs. The simplest way to force a

47

resource-holding job’s execution is by making each CS non-preemptive. The non-preemptive execution of

CSs has one major disadvantage: any higher-priority job, regardless of whether the job requires any resource

or not, can be pi-blocked due to the resource-holder’s non-preemptive execution.

Other common progress mechanisms usually raise a job’s effective priority temporarily to force the

execution of resource-holding jobs. Therefore, under such mechanisms, a job has an original base priority

and an effective priority, which may differ in value depending on whether a locking protocol’s progress

mechanism elevates the effective priority.4 One such a progress mechanism is priority inheritance [Sha et al.,

1990; Rajkumar, 1991], which raises the effective priority of a job holding resource ℓq to the maximum of its

priority and the priorities of all jobs waiting for ℓq. Priority inheritance is supported in different OSs, e.g.,

rt mutex in Linux uses it [The Linux Kernel Organization, 2024]. Although priority inheritance is effective

under global scheduling, it does not work well under partitioned or clustered scheduling [Brandenburg and

Anderson, 2011]. This is because the priority values may be analytically incomparable across processor

(resp., cluster) boundaries under partitioned (resp., clustered) scheduling.

Priority boosting [Rajkumar et al., 1988; Rajkumar, 1990, 1991; Brandenburg and Anderson, 2010a],

in contrast, works well under partitioned scheduling. Priority boosting unconditionally elevates a resource-

holding job’s effective priority above the highest possible non-boosted priority. Thus, priority boosting is

technically similar to non-preemptive CSs. However, under priority boosting, jobs remain preemptive, e.g., a

job holding resource ℓq can have higher boosted priority (thus, preempt) than a job holding another resource

ℓp. Priority boosting still has a similar issue to non-preemptive resource accesses, as a resource-holder’s

priority is boosted regardless of whether any job is pi-blocked for the same resource or not.

Another alternative is priority donation [Brandenburg and Anderson, 2014], which ensures that a job τi,j

can only issue a request when its priority is high enough to be scheduled. Moreover, if a job τk,ℓ’s release

causes τi,j to have insufficient priority to be scheduled, then τk,ℓ “donates” its priority to τi,j . This ensures

that a resource holder is always scheduled. This property makes priority donation particularly effective under

clustered scheduling.

Allocation inheritance [Holman and Anderson, 2006] is another progress mechanism that solves the

incomparable priority problem of priority inheritance. In addition to raising the resource-holding job’s

priority to the highest-priority pi-blocked job waiting for the same resource, allocation inheritance allows

4S-oblivious schedulability analysis is performed assuming that jobs are scheduled by their base priorities. Thus, the
definition of s-oblivious pi-blocking is based on base priorities.

48

the resource-holding job to execute on the processor where the pi-blocked job is supposed to execute. This

idea also appeared under different names: local helping [Hohmuth and Härtig, 2001], migratory priority

inheritance [Brandenburg, 2013a], multiprocessor bandwidth inheritance [Faggioli et al., 2010], etc.

Request vs. release blocking. As should be obvious by now, a job may experience pi-blocking each time

it requests a resource—this is called request blocking. A locking protocol may also cause another type of

pi-blocking, called release blocking, when a job is released. For example, with non-preemptive resource

accesses, a newly released higher-priority job may not execute upon its release. Similarly, under priority

donation, a newly released job may donate its priority and suffer from release blocking.

2.3.1 S-Oblivious Pi-Blocking Bounds

Multiprocessor real-time locking protocols and their s-oblivious pi-blocking bounds have mostly been

studied under JLFP schedulers.

Lower bound. For mutex locks, a trivial lower bound of M − 1 request lengths on per-request s-oblivious

pi-blocking under any JLFP scheduler is known [Brandenburg and Anderson, 2010a]. This lower-bound

result can be seen from the following scenario. Consider that M jobs are released synchronously, and

each of them issues a request for a resource ℓq immediately after being scheduled. Since no two jobs can

access the resource at the same time, the request of one of these M jobs is satisfied last. This job is one

of the M highest-priority jobs throughout its suspension times, incurring a pi-blocking of M − 1 request

lengths. Recently, a lower bound of M +M(HN−1 −HM) on per-request s-oblivious pi-blocking under

any non-JLFP scheduler has been shown [Tong et al., 2025], where Hi = 1 + 1/2 + . . .+ 1/i.

Contribution of this dissertation. Regarding s-oblivious pi-blocking for mutex locks, we proved a non-

trivial lower bound of 2M − 2 request lengths on per-request s-oblivious pi-blocking under a class of JLFP

schedulers that includes G-EDF and G-FP but not G-FIFO scheduling.

Upper bound. Pi-blocking upper-bound results are typically established by designing locking protocols

that achieve such results. Since the general per-request pi-blocking lower bound is M − 1 request lengths,

any multiprocessor real-time locking protocol that achieves per-request pi-blocking of M − 1 (resp., O(M))

request lengths are considered optimal (resp., asymptotically optimal). Multiprocessor locking protocols such

as the G-OMLP [Brandenburg and Anderson, 2010a], the C-OMLP [Brandenburg and Anderson, 2011], and

the OMIP [Brandenburg, 2013a] are asymptotically optimal under any JLFP scheduling algorithm. Note

49

Table 2.4: Asymptotically optimal locking protocols for mutex locks under s-oblivious schedulability analysis
for JLFP scheduling.

Scheduling Protocol Release blocking Request blocking

Global JLFP G-OMLP [Brandenburg and Anderson,
2010a]

0 (2M − 1)Lq
max

Clustered JLFP C-OMLP [Brandenburg and Anderson,
2011]

MLmax (M − 1)Lq
max

Clustered JLFP OMIP [Brandenburg, 2013a] 0 (2M − 1)Lq
max

C-FIFO OLP-F (This dissertation) 0 (M − 1)Lq
max

that the G-OMLP is applicable only under global scheduling. These locking protocols use different queue

structures to order resource requests. Moreover, the G-OMLP, the C-OMLP, and the OMIP use priority

inheritance, priority donation, and migratory priority inheritance, respectively, as their progress mechanisms.

Despite such differences, when each job issues only one request, all these locking protocols provide a

pi-blocking upper bound of 2M − 1 request lengths. Table 2.4 provides a summary of these pi-blocking

bounds of these asymptotically optimal locking protocols. Note that, for the C-OMLP, the pi-blocking

bound of 2M − 1 request lengths comes from a combination of release and request blocking. Recently, a

locking protocol, called the NJLP, has been proposed, which achieves an asymptotically optimal s-oblivious

pi-blocking bound under non-JLFP scheduling [Tong et al., 2025]. Locking protocols and their corresponding

s-oblivious pi-blocking bounds have also been studied for the particular application of accessing a GPU using

a lock [Ali et al., 2024].

Contribution of this dissertation. In this dissertation, we propose the optimal locking protocol for mutual

exclusion sharing under C-FIFO scheduling (OLP-F), which achieves optimal pi-blocking under C-FIFO

scheduling. To match the lower bound on pi-blocking, the OLP-F ensures that each job suffers pi-blocking

for the duration of at most M − 1 request lengths and incurs no release blocking (see Table 2.4). Thus, the

OLP-F is an optimal locking protocol under C-FIFO scheduling. Note that clustered scheduling generalizes

both global and partitioned scheduling, so the OLP-F is also optimal under G-FIFO and P-FIFO scheduling.

2.3.2 S-Aware Pi-Blocking Bounds

Many locking protocols have been studied under s-aware analysis. Many of these protocols (e.g., the

multiprocessor priority ceiling protocol (MPCP) [Rajkumar et al., 1988], the parallel priority ceiling protocol

50

(PPCP) [Easwaran and Andersson, 2009], the priority inheritance protocol (PIP) [Rajkumar, 1991], etc.)

were inspired by classical uniprocessor locking protocols. Under s-aware analysis, an Ω(n) lower bound on

pi-blocking has been established [Brandenburg and Anderson, 2010a]. The FMLP+ [Brandenburg, 2014]

is an extension of the flexible multiprocessor locking protocol (FMLP), which achieves asymptotically

optimal s-aware pi-blocking under clustered JLFP scheduling. Later, linear-programming techniques were

shown to improve the s-aware analysis of various protocols, including the PIP, the PPCP, and the FMLP,

under G-FP and P-FP scheduling [Brandenburg, 2013b; Yang et al., 2015]. While s-oblivious pi-blocking

bounds have not been studied under semi-partitioned scheduling, the migration-based locking protocol under

semi-partitioned scheduling (MLPS) and the non-migration-based locking protocol under semi-partitioned

scheduling (NMLPS) were proposed and analyzed under s-aware schedulability analysis [Afshar et al., 2012].

2.4 Gang Tasks

The sporadic gang task model is a parallel task model that generalizes the sporadic task model. A job

of a gang task consists of multiple co-scheduled threads and requires a specified number of processors for

execution. Based on the flexibility allowed in determining the number of processors assigned to a job, gang

tasks can be classified as follows [Goossens and Richard, 2016].

• Rigid. The number of processors assigned to a rigid gang task is specified externally to the scheduler a

priori and does not change at runtime. Thus, all jobs of a rigid gang task require the same number of

processors.

• Moldable. The number of processors assigned to a job of a moldable gang task is determined by the

scheduler, but remains fixed during the execution of the job. Different jobs of the same task may be

assigned different numbers of processors. Typically, a minimum and maximum number of processors

are specified a priori for each moldable gang task.

• Malleable. The number of processors assigned to a job can be adjusted by the scheduler at runtime.

In the following section, we review prior work on gang scheduling and discuss our contributions.

51

2.4.1 Prior Work

Gang tasks were introduced by Ousterhout et al. to reduce the bottleneck in interprocess communica-

tion [Ousterhout, 1982]. It is known that determining HRT-feasibility and finding an HRT-optimal schedule

of preemptive and non-preemptive sporadic rigid gang tasks are NP-hard when the number of processors

is part of the input [Blazewicz et al., 1986; Kubale, 1987; Goossens and Richard, 2016]. We now describe

different known schedulability results for gang scheduling.

HRT scheduling of preemptive rigid gang. To our knowledge, all work on the preemptive scheduling

of rigid gang tasks considers constrained-deadline systems. Goossens et al. showed that preemptive gang

scheduling under work-conserving JLFP scheduling is not sustainable [Goossens and Richard, 2016]. They

also gave a linear-program-based optimal scheduler for implicit-deadline periodic gang tasks, which runs in

polynomial time when the number of processors is constant [Goossens and Richard, 2016]. However, the

scheduler requires execution for full WCETs for all jobs or idling processors for some duration if a job finishes

before its WCET to avoid timing anomalies. They also proposed an FP scheduler and determined its speed-up

factor. Goossens and Berten devised an exact HRT-schedulability test for constrained-deadline periodic

gang tasks under a class of preemptive JLFP schedulers based on the schedule repetition property [Goossens

and Berten, 2010]. A sufficient HRT-schedulability test for constrained-deadline sporadic gang tasks under

G-EDF was first proposed in [Kato and Ishikawa, 2009], which was later proved to be incorrect [Richard

et al., 2017]. HRT-schedulability tests under G-EDF were also proposed in [Dong and Liu, 2019; Lee et al.,

2022b]. Response-time analysis for constrained-deadline sporadic gang tasks under G-FP scheduling was

studied in [Lee et al., 2022b]. Stationary scheduling and strict-partitioning scheduling were considered

for constrained-deadline rigid gang tasks in [Ueter et al., 2021; Sun et al., 2024a]. Other work considered

scheduling only one rigid gang task at a time [Ali et al., 2021] and the mixed-criticality scheduling of rigid

gang tasks [Bhuiyan et al., 2019].

HRT scheduling of non-preemptive rigid gang tasks. Work-conserving scheduling of non-preemptive rigid

gang tasks can cause pi-blocking when a low-priority job that requires fewer processors is scheduled instead

of a high-priority job that requires more. Unfortunately, such pi-blocking can have a transitive effect, which

is known as 2D-blocking [Dong and Liu, 2022]. A sufficient HRT-schedulability test for constrained-deadline

rigid gang tasks was given in [Dong and Liu, 2022]. Schedulability under G-FP schedulers for constrained-

52

deadline rigid gang tasks was considered in [Lee et al., 2022a]. P-FP scheduling of constrained-deadline

rigid gang tasks was considered in [Sun et al., 2024a,b].

HRT scheduling of moldable or malleable gang tasks. A greedy scheduler and a corresponding sufficient

HRT-schedulability test for preemptive moldable gang tasks were proposed in [Lee et al., 2011]. Collette

et al. gave an HRT-feasibility test and a scheduling algorithm that minimizes the number of processors

required to schedule a set of preemptive malleable gang tasks [Collette et al., 2008]. Nelissen et al. gave a

response-time analysis for non-preemptive gang tasks using the concept of schedule-abstraction graphs under

work-conserving global JLFP schedulers [Nelissen et al., 2022].

SRT scheduling. SRT scheduling or HRT scheduling of arbitrary-deadline gang tasks has received little

attention. While exact SRT-feasibility conditions for sporadic tasks and DAG tasks are known (Corollary 1.1

and Theorem 2.1), such conditions remain unknown for gang task models. The lone work on SRT gang

scheduling [Dong et al., 2021] gives a sufficient condition for bounded response times and a response-time

bound for gang tasks under preemptive G-EDF scheduling.

Bundled task model. The bundled task model is a recently introduced generalization of rigid gang

tasks [Wasly and Pellizzoni, 2019]. In this model, a bundled task is represented as a chain of “bundles,” where

successive bundles have precedence constraints between them. Each bundle is a rigid gang task, but different

bundles of the same task may have different processor requirements. The HRT scheduling of bundled tasks

was studied under global and partitioned FP scheduling [Wasly and Pellizzoni, 2019; Rispo et al., 2024].

Contribution of this dissertation. In this dissertation, we consider the SRT-feasibility problem pertaining

to sporadic rigid gang tasks. We derive a necessary and a sufficient SRT-feasibility condition and show

that determining the SRT-feasibility of a sporadic rigid gang task system is NP-hard. We also show that

G-EDF is not an SRT-optimal scheduler and derive a new condition for SRT-schedulability under G-EDF

that theoretically dominates the condition in [Dong et al., 2021].

We also introduced a new task model in which rigid gang tasks can have precedence constraints among

them. Thus, the model generalizes the DAG task model by allowing each node to be a gang task. We consider

the HRT scheduling of such a task system on a heterogeneous platform consisting of multiple CEs. We give a

response-time analysis for such DAGs, assuming that each DAG has a constrained deadline.

53

2.5 General Definitions and Notation

In this section, we provide definitions and notation that apply throughout the dissertation. Specific

restrictions and assumptions will be explicitly mentioned when required.

We denote the ith task of a task system by τi and the jth job of τi by τi,j . The WCET of τi is denoted

by Ci. The largest and smallest WCETs among all tasks are denoted by Cmax and Cmin, respectively. The

offset of a periodic task τi, denoted by Φi, is the release time of τi,1. The largest and smallest offsets among

all tasks are denoted by Φmax and Φmin, respectively. The relative deadline of τi is denoted by Di. The

parallelization level of τi is denoted by Pi.

The release time, absolute deadline, and completion time of job τi,j are denoted by r(τi,j), d(τi,j), and

f(τi,j), respectively. The response time of τi,j is denoted by R(τi,j) = f(τi,j)−r(τi,j). The response time of

τi is R(τi) = supj R(τi,j). The tardiness of a job τi,k is defined as max{0, f(τi,j)− d(τi,j)}. The tardiness

of task τi is the maximum tardiness among any of its jobs. Based on job release and finish times, we define

pending and ready jobs.5

Definition 2.4 (Pending job). A job τi,j is pending at time t in a schedule S if and only if r(τi,j) ≤ t <

f(τi,j). ◀

Definition 2.5 (Ready job). A job τi,j is ready at time t in a schedule if and only if it is pending and one of

the following two holds.

(i) j ≤ Pi.

(ii) f(τi,j−Pi
) ≤ t. ◀

Thus, a job is pending if it has been released but yet to complete execution. A pending job can be ready

or not. The job is ready, i.e., can be scheduled, if at most Pi − 1 prior jobs of τi are pending. Otherwise,

the job is not ready to execute. Unless otherwise stated, we assume that tasks are scheduled by preemptive

global-EDF-like (GEL) schedulers. We also assume time to be discrete and a unit of time is 1.0.

The utilization of τi is ui = Ci/Ti. The total utilization of the task system Γ is Utot =
∑N

i=1 ui. We

require ui ≤ Pi and Utot ≤M to hold, which is the exact condition for bounded response times for sporadic

tasks (Corollary 1.1). The hyperperiod H is the LCM of all periods. The periods are pseudo-harmonic when

each period divides maxi{Ti}, i.e., H = maxi{Ti} holds.

5In the later chapters, the definition of pending and ready jobs will be amended (if needed) to deal with other features.

54

2.6 Chapter Summary

In this chapter, we reviewed the task models considered in this dissertation. We also reviewed existing

work on scheduling sequential tasks, DAG tasks, gang tasks, and mutex resources. Furthermore, we

highlighted the contributions of this dissertation in the context of existing work on each task model.

55

CHAPTER 3: RESPONSE-TIME BOUND FOR PSEUDO-HARMONIC SEQUENTIAL TASKS1

In this chapter, we give response-time bounds of periodic tasks scheduled by global-EDF-like (GEL)

schedulers on an identical multiprocessor platform. For pseudo-harmonic periodic tasks, we first give a

polynomial-time computable bound that is tight within a constant factor. This bound does not increase with

the processor count for pseudo-harmonic periodic tasks. We then give a simulation-based exact response-time

analysis for periodic tasks. This analysis can be performed in pseudo-polynomial time for pseudo-harmonic

tasks.

Organization. In the rest of this chapter, we give the system model considered in this chapter (Section 3.1),

derive a response-time bound for GEL schedulers (Section 3.2), show how to determine exact response-time

bounds via schedule simulation (Section 3.3), discuss our experimental results (Section 3.4), and provide a

summary (Section 3.5).

3.1 System Model

In this section, we provide needed assumptions and definitions. Table 3.1 summarizes the notation used

in this chapter.

Task model. We consider a task system Γ consisting of N periodic tasks τ1, τ2, . . . , τN to be scheduled on

M identical processors. Each task τi releases a potentially infinite sequence of jobs τi,1, τi,2, The period

of task τi, denoted by Ti, is the separation time between two consecutive job releases by it. The largest

period among all tasks is denoted by Tmax. We assume that tasks have no parallelism, i.e., ∀i : Pi = 1 holds.

Therefore, τi,j+1 cannot start execution before τi,j completes. The WCET of τi is denoted by Ci. The offset

of a periodic task τi, denoted by Φi, is the release time of τi,1. The largest offset among all tasks is denoted

by Φmax. The relative deadline of τi is Di = Ti. For brevity, we denote a periodic task τi by (Φi, Ci, Ti).

1 Contents of this chapter previously appeared in preliminary form in the following paper:

Ahmed, S. and Anderson, J. (2021), Tight Tardiness Bounds for Pseudo-Harmonic Tasks under Global-EDF-Like
Schedulers, Proceedings of the 33rd Euromicro Conference on Real-Time Systems, pages 11:1–11:24.

56

Table 3.1: Notation summary for Chapter 3.

Symbol Meaning

Γ Task system

N Number of tasks

M Number of processors

τi ith task

Ti Period of τi

Ci WCET of τi

Φi Offset of τi

Yi RPP of τi

ui Utilization of τi

R(τi) Response time of τi

(Φi, Ci, Ti) Task τi

Utot Utilization of Γ

H Hyperperiod of Γ

hi H/Ti

Tmax maxi{Ti}

Φmax maxi{Φi}

Ymax maxi{Yi}

Ymin mini{Φi}

τi,j jth job of τi

r(τi,j) Release time of τi,j

f(τi,j) Completion time of τi,j

y(τi,j) PP of τi,j

R(τi,j) Response time of τi,j

S An arbitrary schedule

I Ideal schedule

A(τi, t, t
′,S) Allocation of τi in S (Definition 3.1)

A(Γ, t, t′,S) Allocation of Γ in S (Definition 3.1)

lag(τi, t,S) lag of τi in S (3.3)

LAG(Γ, t,S) LAG of Γ in S (3.5)

57

The utilization of τi is ui = Ci/Ti. The total utilization of the task system Γ is Utot =
∑N

i=1 ui. We

require ui ≤ 1.0 and Utot ≤M to hold, which is the exact condition for bounded response times for sporadic

tasks (Corollary 1.1). The hyperperiod H is the LCM of all periods. The periods are pseudo-harmonic when

each period divides maxi{Ti}, i.e., H = Tmax holds.

Scheduling. We assume that jobs of Γ are scheduled by a preemptive GEL scheduler. Under GEL scheduling,

each task τi has a relative PP Yi. We assume that Yi ≥ 0 holds for each task τi. The maximum and minimum

relative PP among all tasks in Γ are denoted by Ymax and Ymin, respectively. The PP of a job τi,j , denoted by

y(τi,j), is defined as

y(τi,j) = r(τi,j) + Yi. (3.1)

Under GEL scheduling, jobs with earlier PP has higher priority. We assume ties to be broken arbitrarily but

consistently by task index. Therefore, jobs are prioritized according to the following rule.

PR. Job τi,j has higher priority than job τk,ℓ if and only if (y(τi,j) < y(τk,ℓ)) ∨ (y(τi,j) = y(τk,ℓ) ∧ i < k).

We now illustrate the concept of LAG, which we heavily use in deriving our bounds.

3.1.1 The Concept of LAG

The concept of LAG is pivotal in the design and analysis many real-time scheduling algorithms [Baruah

et al., 1996; Stoica et al., 1996; Devi and Anderson, 2008]. To define LAG, we first introduce the concept of

an ideal schedule. We will then define LAG by comparing an arbitrary schedule with such an ideal schedule.

Ideal schedule. Let π̂1, π̂2, . . . , π̂N be N processors with speeds u1, u2, . . . , uN , respectively. Thus, these

processors represent a uniform multiprocessor platform. In an ideal schedule I, each task τi is partitioned to

execute on processor π̂i. Each job starts execution as soon as it is released and completes execution by its

deadline in I. Therefore, the following property holds.

Property 3.1. Each job τi,k finishes by time r(τi,k) + Ti in I.

Example 3.1. Consider a periodic task system Γ with tasks τ1 = (0, 2, 3), τ2 = (0, 2, 3), and τ3 = (0, 4, 6).

Figure 3.1(a) shows an ideal schedule I for this task system. Since τ2’s utilization is 2/3, it continuously

executes on a processor with speed 2/3. ◀

58

Time

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,5

τ2,1 τ2,2 τ2,3 τ2,4 τ2,5 τ2,5

τ3,1 τ3,2 τ3,3

τ1 = (0, 2, 3)

τ2 = (0, 2, 3)

τ3 = (0, 4, 6)

0 3 6 9 12 15 18

speed 4/6 speed 2/3 speed 2/3

Release Deadline Completion Execution

(a)

Time

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,3 τ2,5τ2,1 τ2,2 τ2,4 τ2,6

τ3,1 τ3,1 τ3,2 τ3,2 τ3,3

τ1 = (0, 2, 3)

τ2 = (0, 2, 3)

τ3 = (0, 4, 6)

0 3 6 9 12 15 18

(b)

Time

1

-1

lag of τ2

3 6 9 12 15 18

τ1 = (0, 2, 3)

(c)

Figure 3.1: (a) An ideal schedule, (b) a G-EDF schedule of the task system in Example 3.1. (c) lag of τ2.

To represent how much a task executes during an arbitrary interval, we now introduce the concept

of allocation. Since an ideal schedule assumes uniform multiprocessors, we give a general definition of

allocation that applies also for any arbitrary schedule on uniform multiprocessors.

59

Definition 3.1 (Allocation). Suppose a task τi (resp., all tasks of Γ) executes for xi,k (resp., Xk) time units on

a processor πk with speed sk over a time interval [t, t′) in a schedule S. The cumulative processor capacity

allocated to a task τi in schedule S over an interval [t, t′), denoted by A(τi, t, t
′,S), is

∑
k xi,ksk. The

cumulative processor capacity allocated to task system in a schedule S over an interval [t, t′), denoted by

A(Γ, t, t′,S), is
∑

kXksk. Thus,

A(Γ, t, t′,S) =
∑
τi∈Γ

A(τi, t, t
′,S). (3.2)

◀

Properties of an ideal schedule I can be expressed using the concept of allocation. A task τi executes

at a speed of ui in I. Therefore, A(τi, t, t′, I) ≤ ui(t
′ − t). Moreover, since Utot =

∑N
i=1 ui, for task

system Γ, we have A(Γ, t, t, I) ≤ Utot(t
′ − t). If τi is periodic and each job executes for its WCET, then

A(τi, t, t
′, I) = ui(t

′ − t) where t, t′ ≥ Φi.

Example 3.1 (Continued). In the ideal schedule I shown in Figure 3.1(a), τ2 continuously executes at speed

2/3. Thus, τ2’s allocation in I during the interval [0, 5) is A(τ2, 0, 5, I) = 5 · 23 = 10/3. Since the total

utilization of the task system is 2/3 + 2/3 + 4/6 = 2, allocation of Γ during each time unit is 2.0. Therefore,

A(Γ, 0, 5, I) = 5 · 2 = 10.0.

A G-EDF schedule S for the same task system on two unit-speed processors is shown in Figure 3.1(b).

In S, task τ2 executes for 4.0 time units during the interval [0, 5). Since all processors have unit speeds

in S, τ2’s allocation in S during the interval [0, 5) is A(τ2, 0, 5,S) = 4.0. During the interval [0, 5), all

processors are busy except the sub-interval [2, 3). During the interval [2, 3), one processor is busy. Therefore,

A(Γ, 0, 5,S) = 9.0. ◀

lag and LAG. We are now ready to define lag and LAG. The lag of a task τi at time t in a schedule S is

defined as

lag(τi, t,S) = A(τi, 0, t, I)− A(τi, 0, t,S). (3.3)

Thus, lag defines how much “ahead” or “behind” a task’s execution is in S compared to an ideal execution of

the task to meet all deadlines in I. A positive lag means that the task has executed less in S than I, so S has

allocated less processor capacity to the task than I . A negative value means the opposite that S over-allocates

60

processor capacity to the task. Since lag(τi, 0,S) = 0, for t′ ≥ t we have

lag(τi, t
′,S) = lag(τi, t,S) + A(τi, t, t

′, I)− A(τi, t, t
′,S). (3.4)

The LAG of a task system Γ in a schedule S at time t is defined as

LAG(Γ, t,S) =
∑
τi∈Γ

lag(τi, t,S) = A(Γ, 0, t, I)− A(Γ, 0, t,S). (3.5)

Similarly, LAG defines how much “ahead” or “behind” the total execution of all tasks of Γ in S compared to

their ideal execution in I. Since LAG(Γ, 0,S) = 0, for t′ ≥ t we have

LAG(Γ, t′,S) = LAG(Γ, t,S) + A(Γ, t, t′, I)− A(Γ, t, t′,S). (3.6)

Example 3.1 (Continued). Since τ2’s allocation over interval [0, 5) in S and I are 4.0 and 10/3, respectively,

τ2’s lag in S at time 5 is lag(τ2, 5,S) = 10/3− 4 = −2/3. Note that both jobs of τ2 that are released before

time 5 complete their execution in S. However, the second job is still pending in I at time 5. Figure 3.1(c)

shows τ2’s lag values with respect to time.

Similarly, the LAG of the task system Γ at time 5 is 1.0. This one unit of LAG is due to the one idle

processor in S during the interval [2, 3). ◀

3.2 Response-Time Bound

In this section, we derive a polynomial-time computable response-time bound for periodic task systems

under GEL schedulers. We derive the bound for any periodic task system and then show its tightness for

periodic systems with pseudo-harmonic periods. We assume N > M ; otherwise, every job starts execution

upon its release, causing a response time of at most its task’s WCET. We initially assume the following,

which we relax later.

Assumption 3.1. Each job of any task τi executes for its WCET Ci.

61

To prove our bound, we consider an arbitrary GEL schedule S and an ideal schedule I of task system Γ

under Assumption 3.1. Under this assumption, by the definition of I, we have

∀t ≥ Φi : A(τi, 0, t, I) = (t− Φi)ui. (3.7)

We derive our response-time bound (Theorem 3.1) by giving an upper bound on per-task lag (Lemma 3.20)

using a lag-monotonicity property (Lemma 3.13).2 Informally, the lag-monotonicity property states that

no task τi receives more allocation in S than I, i.e., lag does not decrease, over any interval of length H

beginning at or after Φi. This can be observed in Figure 3.1(c) by checking lag values of time instants

separated by H = 6 time units, e.g., τ2’s lag at times 3, 9, and 15 are 0, 1, and 1, respectively. We first

establish the lag-monotonicity property using a series of properties of lag proved in Section 3.2.1. We then

use the lag-monotonicity property to derive our response-time bound in Section 3.2.2.

3.2.1 Properties of lag

We begin by proving some properties of lag. Since the lag-monotonicity property compares lag values

between two time instants, we first establish several properties concerning such comparisons between a pair

of lag values (Lemmas 3.8–3.12) based on the simpler properties of lag (Lemmas 3.1–3.7).

The following lemma is based on the fact that the lag of a task τi decreases at a rate of (1− ui) when it

is scheduled. This can be seen in Figure 3.1(c). Since τ2 has a utilization of 2/3, its lag decreases at a rate of

1− 2/3 = 1/3 whenever it is scheduled. In contrast, a task’s lag always increases at a rate of ui when it is

not scheduled.

Lemma 3.1. For any task τi and interval [t, t′) with t ≥ Φi, the following hold.

(a) If τi continuously executes during [t, t′) in S, then lag(τi, t
′,S) = lag(τi, t,S)− (t′ − t)(1− ui).

(b) If τi does not execute during [t, t′) in S, then lag(τi, t
′,S) = lag(τi, t,S) + (t′ − t)ui.

Proof. Since t ≥ Φi, by the definition of I, we have A(τi, t, t
′, I) = (t′ − t)ui.

2In Chapter 4, we will show that the same property (Lemma 4.25) holds when tasks have arbitrary parallelization levels,
i.e., Pi (defined in Section 2.1) successive jobs of a task can execute concurrently. Thus, the proof in Chapter 4 also
works for the case considered in this chapter. However, some lemmas (e.g., Lemma 3.6) proved in this chapter do not
generalize to arbitrary parallelization levels.

62

(a) Since τi continuously executes throughout [t, t′) in S, A(τi, t, t′,S) = (t′ − t) holds. Substituting

A(τi, t, t
′, I) and A(τi, t, t

′,S) in (3.4), we have lag(τi, t
′,S) = lag(τi, t,S) + (t′ − t)ui − (t′ − t) =

lag(τi, t,S)− (t′ − t)(1− ui).

(b) Since τi does not execute during [t, t′) in S, we have A(τi, t, t
′,S) = 0. Substituting A(τi, t, t

′, I) and

A(τi, t, t
′,S) in (3.4), we have lag(τi, t′,S) = lag(τi, t,S) + (t′ − t)ui − 0 = lag(τi, t,S) + (t′ − t)ui.

When the lag of a task is positive, some of its jobs are released but not finished. The following lemma

shows this.

Lemma 3.2 ([Yang and Anderson, 2017], Lemma 1). If lag(τi, t,S) > 0, then τi has a pending job at t in S .

The following lemma considers lag values of a task at period boundaries in S . In I, every job completes

execution at a period boundary when the next job of the task is released. Therefore, the lag of any task must

be non-negative at period boundaries; otherwise, a not-yet-released job would have to execute at some point

in S , which is impossible. This property can be seen at times {0, 3, 6, . . .} for τ2 in Figure 3.1(c).

Lemma 3.3. For any task τi and non-negative integer c, lag(τi,Φi + cTi,S) ≥ 0.

Proof. The lemma trivially holds for c = 0. Assume that there is a task τi and an integer c ≥ 1 such that

lag(τi,Φi + cTi,S) < 0 holds. Then, by (3.3), A(τi, 0,Φi + cTi,S) > A(τi, 0,Φi + cTi, I) holds. Since τi

releases jobs periodically, jobs τi,c and τi,c+1 are released at times Φi+(c− 1)Ti and Φi+ cTi, respectively.

By Property 3.1, job τi,c completes execution at time Φi + cTi in I. Therefore, all jobs of τi released

before time Φi + cTi complete execution by time Φi + cTi in I. Since τi,c cannot execute before its release,

A(τi, 0,Φi + cTi,S) cannot be larger than A(τi, 0,Φi + cTi, I), a contradiction.

Lemmas 3.4–3.7 give relationships among a task τi’s lag at time t, its utilization, and the release time of

a job of τi. We prove these lemmas by expressing τi’s allocation by time t in terms of τi’s utilization and the

release time of a job of τi.

Lemma 3.4. If τi has no pending job at time t ≥ Φi in S and r(τi,k) ≤ t < r(τi,k+1) holds, then

lag(τi, t,S) = (t− r(τi,k+1))ui.

Proof. Since τi has no pending job at time t, τi,k and all prior jobs of τi complete execution at or before time t.

Since τi,k+1 is released at time r(τi,k+1) = r(τi,k)+Ti > t, no job released after r(τi,k) executes before time t.

Hence, A(τi, 0, t,S) =
∑k

j=1Ci =
∑k

j=1 Tiui =
∑k

j=1(r(τi,j+1)− r(τi,j))ui = (r(τi,k+1)− r(τi,1))ui =

63

(r(τi,k+1)−Φi)ui. By (3.7), we have A(τi, 0, t, I) = (t−Φi)ui. Substituting A(τi, 0, t, I) and A(τi, 0, t,S)

in (3.3), we have lag(τi, t,S) = (t− Φi)ui − (r(τi,k+1)− Φi)ui = (t− r(τi,k+1))ui.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), τ2 has no pending job

at time 2 in S and r(τ2,1) ≤ 2 < r(τ2,2) holds. Since r(τ2,2) = 3, for t = 2, we have (t − r(τ2,2))u2 =

(2− 3)23 = −2/3, which is also the value of lag(τ2, 2,S) (see Figure 3.1(c)).

Lemma 3.5. If τi,k completes execution at or before t ≥ Φi in S, then lag(τi, t,S) ≤ (t− r(τi,k+1))ui.

Proof. Since τi,k completes execution at or before t, all jobs of τi released at or before r(τi,k) complete

execution at or before t. Hence, A(τi, 0, t,S) ≥
∑k

j=1Ci =
∑k

j=1 Tiui =
∑k

j=1(r(τi,j+1)− r(τi,j))ui =

(r(τi,k+1) − r(τi,1))ui. By (3.7), we have A(τi, 0, t, I) = (t − Φi)ui. Substituting A(τi, 0, t, I) and

A(τi, 0, t,S) in (3.3), we have lag(τi, t,S) = A(τi, 0, t, I)−A(τi, 0, t,S) ≤ (t−Φi)ui−(r(τi,k+1)−Φi)ui =

(t− r(τi,k+1))ui.

Lemma 3.6. If τi has a pending job τi,k at time t ≥ Φi in S, then lag(τi, t,S) > (t− r(τi,k+1))ui.

Proof. Since τi,k is pending at time t, we have A(τi, 0, t,S) <
∑k

j=1Ci =
∑k

j=1 Tiui =
∑k

j=1(r(τi,j+1)−

r(τi,j))ui = (r(τi,k+1)−r(τi,1))ui. By (3.7), A(τi, 0, t, I) = (t−Φi)ui holds. Substituting A(τi, 0, t, I) and

A(τi, 0, t,S) in (3.3), we have lag(τi, t,S) = A(τi, 0, t, I)−A(τi, 0, t,S) > (t−Φi)ui−(r(τi,k+1)−Φi)ui =

(t− r(τi,k+1))ui.

Lemma 3.7. If τi,k is the ready job of τi at time t ≥ Φi in S, then lag(τi, t,S) ≤ (t− r(τi,k))ui.

Proof. Since τi,k is the ready job of τi at time t, all jobs of τi prior to τi,k complete execution at or before

t. Thus, A(τi, 0, t,S) ≥
∑k−1

j=1 Ci =
∑k−1

j=1 Tiui =
∑k−1

j=1(r(τi,j+1)− r(τi,j))ui = (r(τi,k)− r(τi,1))ui =

(r(τi,k)− Φi)ui. By (3.7), A(τi, 0, t, I) = (t− Φi)ui holds. Substituting A(τi, 0, t, I) and A(τi, 0, t,S) in

(3.3), we have lag(τi, t,S) ≤ (t− Φi)ui − (r(τi,k)− Φi)ui = (t− r(τi,k))ui.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), τ3,1 is τ3’s ready job at at

time 4. Task τ3’s lag at time 4 is 4·2/3−1 = 5/3. By Lemma 3.6, lag(τ3, 4,S) = 5/3 > (4−6)·2/3 = −4/3.

By Lemma 3.7, lag(τ3, 4,S) = 5/3 ≤ (4− 0) · 2/3 = 8/3.

Using Lemmas 3.4–3.7, we now prove Lemmas 3.8–3.11, which pertain to the relationship between

the lag of a task τi at a pair of time instants that are separated by an integer multiple of τi’s period. For any

integer c and any pair of time instants t, t+ cTi ≥ Φi, jobs of τi that are separated by cTi time units receive

64

the same allocation in I by time t and t+ cTi, respectively. For example, consider task τ2 and times 4 and 10

in Figure 3.1(a). Since τ2’s period is 3.0, times 4 and 10 are separated by two periods of τ2. Consider jobs

τ2,2 and τ2,4 that are also separated by two periods of τ2. In I, both jobs τ2,2 and τ2,4 execute for one time

unit at speed 2/3 by times 4 and 10, respectively.

Now consider the schedule S. Although jobs separated by cTi time units receive the same allocation

by time t and t + cTi in I, they may not in S. The following lemma considers the case where τi has no

pending job at time t in S . In such a case, no job τi,k+c can receive more allocation by time t+ cTi than τi,k

receives by t. Since in I , they receive the same allocation, the lag of τi at time t is not larger than lag of τi at

time t+ cTi. The following lemma shows this.

Lemma 3.8. For any time t and integer c such that min{t, t+ cTi} ≥ Φi, if τi has no pending job at time t

in S , then lag(τi, t,S) ≤ lag(τi, t+ cTi,S).

Proof. Let τi,k be the job of τi such that r(τi,k) ≤ t < r(τi,k+1) holds. Since τi has no pending job at

time t ≥ Φi, by Lemma 3.4 we have

lag(τi, t,S) = (t− r(τi,k+1))ui. (3.8)

Since the jobs of a task are released periodically and t+ cTi ≥ Φi holds, we have r(τi,k+c) = r(τi,k) + cTi.

Since r(τi,k) ≤ t < r(τi,k+1), we have r(τi,k+c) ≤ t+ cTi < r(τi,k+c+1). By Lemmas 3.4 and 3.6, we have

lag(τi, t+ cTi,S) ≥ (t+ cTi − r(τi,k+c+1))ui

= {Since r(τi,k+c+1) = r(τi,k+1) + cTi}

(t+ cTi − r(τi,k+1)− cTi)ui

= (t− r(τi,k+1))ui

= {By (3.8)}

lag(τi, t,S).

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), τ2 has no pending job at

time 5 but has a pending job at time 8 in S . By Lemma 3.8, lag(τ2, 5,S) = −2/3 ≤ 4/3 = lag(τ2, 8,S).

65

The following lemma considers the case where lag(τi, t,S) is not larger than lag(τi, t+ cTi,S) and τi

has a pending job τi,k at time t. Consider the job τi,k+c that has a separation time of cTi with τi,k. In I, both

jobs receive the same allocation by time t and t+ cTi, respectively. Therefore, τi,k+c must not receive more

allocation by time t+ cTi than τi,k has received by time t, meaning that τi,k+c is also pending.

Lemma 3.9. For any integer c such that min{t, t + cTi} ≥ Φi, if lag(τi, t,S) ≤ lag(τi, t + cTi,S) holds

and τi,k is the ready job of τi at t in S , then τi,k+c is pending at time t+ cTi in S.

Proof. Assume for a contradiction that τi,k+c is not pending at time t + cTi. Since τi,k is pending at

time t ≥ Φi, by Definition 2.4, r(τi,k) ≤ t holds, by Lemma 3.6 we have

lag(τi, t,S) > (t− r(τi,k+1))ui. (3.9)

Since jobs are released periodically and r(τi,k) ≤ t holds, we have r(τi,k+c) ≤ t+cTi. Thus, by Definition 2.4,

τi,k+c finishes execution at or before t+ cTi (as it is not pending then). By Lemma 3.5, we have

lag(τi, t+ cTi,S) ≤ (t+ cTi − r(τi,k+c+1))ui

= {Since τi releases periodically,r(τi,k+c+1) = r(τi,k+1) + cTi}

(t+ cTi − r(τi,k+1)− cTi)ui

= (t− r(τi,k+1))ui

< {By (3.9)}

lag(τi, t,S),

a contradiction.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), lag(τ2, 4,S) = −1/3 ≤

2/3 = lag(τ2, 7,S). By Lemma 3.9, since τ2,2 is the ready job of τ2 at time 4 in S and time 7 corresponds to

c = 1, τ2,3 is pending at time 7 in S.

Similarly, we consider the case where lag(τi, t,S) is either not smaller or strictly larger than lag(τi, t+

cTi,S).

Lemma 3.10. For any integer c such that min{t, t+ cTi} ≥ Φi, if τi,k is the ready job of τi at time t in S,

then the following hold.

66

(a) If lag(τi, t,S) ≥ lag(τi, t+ cTi,S), then all jobs of τi released before r(τi,k+c) complete execution at or

before t+ cTi in S.

(b) If lag(τi, t,S) > lag(τi, t+ cTi,S), then all jobs of τi released before r(τi,k+c) complete execution before

t+ cTi in S.

Proof. If k + c = 1, then r(τi,k+c) = r(τi,1) = Φi and the lemma trivially holds. So assume k + c > 1.

Since τi,k is the ready job at time t ≥ Φi, by Lemma 3.7,

lag(τi, t,S) ≤ (t− r(τi,k))ui. (3.10)

(a) Assume for a contradiction that τi has a job that is released before time r(τi,k+c) but does not complete

execution at or before time t+ cTi. Therefore, τi,k+c−1 does not complete execution at or before time t+ cTi

as the jobs of each task are sequential. Since τi,k is the ready job of τi at time t, we have r(τi,k) ≤ t. Since

jobs are released periodically, we have r(τi,k+c) ≤ t+ cTi, which implies r(τi,k+c−1) ≤ t+ cTi. Therefore,

by Definition 2.4, τi,k+c−1 is pending at time t+ cTi. Thus, by Lemma 3.6,

lag(τi, t+ cTi,S) > (t+ cTi − r(τi,k+c))ui

= {Since τi releases periodicallyr(τi,k+c) = r(τi,k) + cTi}

(t+ cTi − r(τi,k)− cTi)ui

= (t− r(τi,k))ui

≥ {By (3.10)}

lag(τi, t,S),

a contradiction.

(b) Since lag(τi, t,S) > lag(τi, t+ cTi,S), by Lemma 3.10(a), all jobs of τi released before time r(τi,k+c)

finish execution at or before time t+cTi. Assume that they do not complete execution before time t+cTi. Thus,

they complete execution at time t+ cTi, and no job released at or after time r(τi,k+c) executes at or before

time t+ cTi. Thus, A(τi, 0, t+ cTi,S) =
∑k+c−1

j=1 Ci =
∑k+c−1

j=1 Tiui =
∑k+c−1

j=1 (r(τi,j+1)− r(τi,j))ui =

(r(τi,k+c) − Φi)ui = (r(τi,k) + cTi − Φi)ui. Thus, by (3.7) and (3.3), lag(τi, t + cTi,S) = A(τi, 0, t +

67

cTi, I)−A(τi, 0, t+ cTi,S) = (t+ cTi−Φi)ui− (r(τi,k) + cTi−Φi)ui = (t− r(τi,k))ui ≥ lag(τi, t,S),

a contradiction.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), lag(τ2, 8,S) = 4/3 >

1/3 = lag(τ2, 11,S). By Lemma 3.10(b), since τ2,3 is the ready job of τ2 at time 8 in S and time 11

corresponds to c = 1, all jobs of τ2 prior to τ2,4 complete execution before time 11 in S.

We now utilize Lemmas 3.9 and 3.10(a) to establish a necessary condition for lag(τi, t,S) = lag(τi, t+

cTi,S) to hold. Intuitively, if lag(τi, t,S) = lag(τi, t+ cTi,S) holds, then in S any job τi,k’s allocation at or

before time t must equal the allocation of job τi,k+c at or before time t+ cTi. This is because their allocation

in I are also the same at these time instants.

Lemma 3.11. For any time t and integer c such that min{t, t+cTi} ≥ Φi, if lag(τi, t,S) = lag(τi, t+cTi,S),

then the following hold.

(a) If there is no pending job of τi at time t in S, then there is no pending job of τi at time t+ cTi in S.

(b) If τi,k is the ready job of τi at time t in S, then τi,k+c is the ready job of τi at time t+ cTi in S.

Proof. (a) Assume that there is a pending job of τi at time t + cTi and let τi,k be the ready job of τi at

time t + cTi. Substituting t and c in Lemma 3.9 by t + cTi and −c, respectively, job τi,k−c is pending at

time t, a contradiction.

(b) By Lemma 3.9, τi,k+c is pending at t+ cTi. By Lemma 3.10(a), all jobs of τi released before r(τi,k+c)

finish execution at or before time t+ cTi. Thus, τi,k+c is the ready job of τi at time t+ cTi.

We now give a necessary condition for the lag-monotonicity property to not hold.

Lemma 3.12. Let t ≥ Φi+H be the first time instant (if one exists) such that lag(τi, t−H,S) > lag(τi, t,S)

holds in S . Then, the following hold.

(a) t > Φi +H .

(b) τi executes during [t− 1, t), but does not execute during [t−H − 1, t−H) in S.

Proof. (a) Assume that t = Φi+H . Since t−H = Φi, we have lag(τi, t−H,S) = lag(τi,Φi,S) = 0. Since

Ti divides H , by Lemma 3.3, we have lag(τi, t,S) = lag(τi,Φi+H,S) ≥ 0. Therefore, lag(τi, t−H,S) ≤

lag(τi, t,S), a contradiction.

68

(b) By Lemma 3.12(a), t− 1 ≥ Φi +H holds. By the definition of t, we have

lag(τi, t−H − 1,S) ≤ lag(τi, t− 1,S). (3.11)

Assume that τi does not execute during [t− 1, t) or does execute during [t−H − 1, t−H). Then, one of

the following three cases holds.

Case 1. τi executes during both [t−H − 1, t−H) and [t− 1, t). By Lemma 3.1(a),

lag(τi, t−H,S) = lag(τi, t−H − 1,S) + ui − 1, (3.12)

and

lag(τi, t,S) = lag(τi, t− 1,S) + ui − 1. (3.13)

Since lag(τi, t−H,S) > lag(τi, t,S), by (3.12) and (3.13), we have lag(τi, t−H−1,S) > lag(τi, t−1,S),

which contradicts (3.11).

Case 2. τi does not execute during both [t−H − 1, t−H) and [t− 1, t). By Lemma 3.1(b),

lag(τi, t−H,S) = lag(τi, t−H − 1,S) + ui, (3.14)

and

lag(τi, t,S) = lag(τi, t− 1,S) + ui. (3.15)

Since lag(τi, t−H,S) > lag(τi, t,S), by (3.14) and (3.15), we have lag(τi, t−H−1,S) > lag(τi, t−1,S),

which contradicts (3.11).

Case 3. τi executes during [t−H − 1, t−H) but does not execute during [t− 1, t). Thus, (3.12) and (3.15)

hold. Therefore, by (3.12), we have

lag(τi, t−H − 1,S) = lag(τi, t−H,S) + 1− ui

≥ {Since ui ≤ 1}

lag(τi, t−H,S)

> {By the definition of t}

69

lag(τi, t,S)

≥ {By (3.15) and ui ≥ 0}

lag(τi, t− 1,S),

a contradiction to (3.11).

Definition 3.2. Let hi = H/Ti. ◀

The following lemma gives a lag-monotonicity property for SRT-schedulable systems that is similar

to that given previously for HRT-schedulable systems on uniprocessors under EDF scheduler [Leung and

Merrill, 1980] and HRT-schedulable systems on multiprocessors under G-EDF scheduler [Cucu-Grosjean

and Goossens, 2011]. Informally, we show that, using Lemmas 3.8–3.10 and 3.12, no task can receive more

allocation in S than I over an interval [t −H, t) because of the existence of higher-priority jobs of other

tasks, i.e., over-allocating a task would require under-allocating another task, violating the priority ordering

of the jobs.

Lemma 3.13 (lag-monotonicity). For any task τi and any time t ≥ Φi +H , lag(τi, t−H,S) ≤ lag(τi, t,S).

Proof. We use Figure 3.2 to illustrate the proof. Assume for a contradiction that t is the first time instant such

that t ≥ Φi +H and there is a task τi with lag(τi, t−H,S) > lag(τi, t,S). By Lemma 3.12(b), τi executes

during [t− 1, t). Let τi,p be the job of τi that executes during [t− 1, t). Since Ti divides H , by Lemma 3.8

(with t and c replaced by t−H and hi, respectively), there is a pending job of τi at time t−H . Let τi,k be

the ready job of τi at time t−H .

Claim 3.1. r(τi,k) < t−H .

Proof. Assume otherwise. Then, r(τi,k) = t − H and lag(τi, t − H,S) = 0 hold. Since jobs are

released periodically and t = r(τi,k) +H holds, there is a non-negative integer c such that t = Φi + cTi,

which by Lemma 3.3 implies lag(τi, t,S) = lag(τi,Φi + cTi,S) ≥ 0. Therefore, lag(τi, t−H,S) = 0 ≤

lag(τi, t,S), and t cannot be a time instant with lag(τi, t−H,S) > lag(τi, t,S). Therefore, r(τi,k) < t−H

holds.

70

Timet−H − 1 t−H t− 1 t

τi,k

y(τi,k)

τj,ℓ

y(τj,ℓ)

τi,p

y(τi,p) ≥ y(τi,k) +H

τj,q

y(τj,q) ≤ y(τj,ℓ) +H

Release

Deadline

PP

Execution

Figure 3.2: Illustration of the proof of Lemma 3.13.

By Claim 3.1, τi,k is pending at time t − H − 1. By Lemma 3.12(b), τi,k does not execute during

[t − H − 1, t − H) (see Figure 3.2). Since lag(τi, t − H,S) > lag(τi, t,S), substituting t and c in

Lemma 3.10(b) by t − H and hi (Definition 3.2), respectively, all jobs of τi released before r(τi,k+hi
)

complete execution before time t (at or before time t− 1). Thus, p ≥ k + hi and we have

y(τi,p) ≥ y(τi,k+hi
)

= {Since τi releases periodically, y(τi,k+hi
) = y(τi,k) + hiTi holds and by Definition 3.2}

y(τi,k) +H. (3.16)

Since τi,k is pending but does not execute during [t−H − 1, t−H) and τi,p executes during [t− 1, t),

there must be a task τj that executes during [t−H − 1, t−H), but does not execute during [t− 1, t). Let

τj,ℓ executes during [t − H − 1, t − H) (see Figure 3.2). By Lemma 3.12(a), t > Φi + H , and hence,

t − 1 ≥ Φi +H . Thus, by the definition of t, lag(τj , t −H − 1,S) ≤ lag(τj , t − 1,S) holds. Since τj,ℓ

executes during [t −H − 1, t −H), it is the ready job of τj at time t −H − 1. Substituting τi,k, t, and c

in Lemma 3.9 by τj,ℓ, t−H − 1, and hj , respectively, τj,ℓ+hj
is pending at time t− 1. Therefore, τj has a

pending job at time t− 1; let τj,q be the ready job of τj at time t− 1. Thus, we have

y(τj,q) ≤ y(τj,ℓ+hj
)

= {Since τj releases periodically, y(τj,ℓ+hj
) = y(τj,ℓ) + hjTj holds and by Definition 3.2}

y(τj,ℓ) +H. (3.17)

Since τi,k is the ready job of τi at time t−H − 1 but does not execute during [t−H − 1, t−H), and

τj,ℓ executes during [t−H − 1, t−H), by Rule PR, we have two cases.

71

Case 1. y(τj,ℓ) < y(τi,k). Substituting y(τj,ℓ) by y(τi,k) in (3.17), we have y(τj,q) < y(τi,k)+H . By (3.16),

y(τj,q) < y(τi,k) +H ≤ y(τi,p). Therefore, by Rule PR, τj,q has higher priority than τi,p. Hence, τi,p cannot

execute during [t− 1, t), while τj,ℓ is not executing during [t− 1, t), a contradiction.

Case 2. y(τj,ℓ) = y(τi,k) and j < i. Substituting y(τj,ℓ) by y(τi,k) in (3.17), we have y(τj,q) ≤ y(τi,k) +H ,

which by (3.16) implies y(τj,q) ≤ y(τi,k)+H ≤ y(τi,p). Therefore, by Rule PR, τj,q has higher priority than

τi,p. Hence, τi,p cannot execute during [t− 1, t), while τj,ℓ is not executing during [t− 1, t), a contradiction.

In both cases, we reach a contradiction.

By (3.5) and Lemma 3.13, we have the following LAG-monotonicity property.

Corollary 3.1 (LAG-monotonicity). For any time instant t ≥ Φmax+H , LAG(Γ, t−H,S) ≤ LAG(Γ, t,S).

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(a), we have H = 6,

lag(τ2, 4,S) = −1/3 ≤ 2/3 = lag(τ2, 10,S) and LAG(Γ, 4,S) = 1 ≤ 2 = LAG(Γ, 10,S).

Lemma 3.14. If τi,k is the ready job of τi at t in S, then y(τi,k) ≤ t− lag(τi,t,S)
ui

+ Yi.

Proof. By Lemma 3.7, we have lag(τi, t,S) ≤ (t− r(τi,k))ui. Applying (3.1) (i.e., y(τi,k) = r(τi,k) + Yi),

we have lag(τi, t,S) ≤ (t− y(τi,k) + Yi)ui. The proof follows from rearranging this inequality.

The following lemma provides a relationship between lag and response times. The proof of this lemma

does not depend on the used scheduling algorithm.3

Lemma 3.15 ([Yang and Anderson, 2017], Corollary 1). If lag(τi, t,S) ≤ Xi holds for any t, then the

response time of τi is at most Ti + Xi
ui

.

3.2.2 Deriving Response-Time Bounds

We now derive response-time bounds for periodic tasks using the properties of lag derived in Section 3.2.1.

We derive our bound by first deriving an upper bound on the lag (Lemma 3.20) of any task τi, and then

applying Lemma 3.15 on the derived upper bound. To derive an upper bound on per-task lag, we first give

Lemmas 3.16–3.19.

3The lemma statement in [Yang and Anderson, 2017] refers to tardiness instead of response times.

72

Definition 3.3. In S, a time instant t is called busy if at least ⌈Utot⌉ tasks have pending jobs at time t, and

non-busy otherwise. In S , a time interval [t, t′) is called busy (resp., non-busy) if each instant in the interval

is busy (resp., non-busy). ◀

Lemma 3.16. If τi continuously executes during [t, t′) in S , then lag(τi, t
′,S) ≤ lag(τi, t,S).

Proof. Follows from Lemma 3.1(a) and ui ≤ 1.

Lemma 3.17. If [t, t′) is a busy interval in S, then LAG(Γ, t′,S) ≤ LAG(Γ, t,S).

Proof. By the definition of I, A(Γ, t, t′, I) ≤ Utot(t
′ − t) holds. By Definition 3.3, we have A(Γ, t, t′,S) ≥

⌈Utot⌉(t′ − t). Therefore, by (3.6) and Utot ≤ ⌈Utot⌉, LAG(Γ, t′,S) = LAG(Γ, t,S) + A(Γ, t, t′, I) −

A(Γ, t, t′,S) ≤ LAG(Γ, t,S) + Utot(t
′ − t)− ⌈Utot⌉(t′ − t) ≤ LAG(Γ, t,S).

Lemma 3.18. For any t ≥ Φmax + H , if LAG(Γ, t − H,S) = LAG(Γ, t,S) holds, then for each τi,

lag(τi, t−H,S) = lag(τi, t,S) holds.

Proof. Assume that there is a task τi with lag(τi, t − H,S) ̸= lag(τi, t,S). Since t ≥ Φmax + H , by

Lemma 3.13, lag(τj , t − H,S) ≤ lag(τj , t,S) holds for any task τj including τi. Therefore, lag(τi, t −

H,S) < lag(τi, t,S) holds. By (3.5), we have

LAG(Γ, t−H,S) =
∑

τj∈Γ\{τi}

lag(τj , t−H,S) + lag(τi, t−H,S)

< {Since lag(τi, t−H,S) < lag(τi, t,S) and for all j, lag(τj , t−H,S) ≤ lag(τj , t,S)}∑
τj∈Γ\{τi}

lag(τj , t,S) + lag(τi, t,S)

= LAG(Γ, t,S),

a contradiction.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), LAG(Γ, 7,S) = 2 =

LAG(Γ, 13,S) holds. By Lemma 3.18, we have lag(τ1, 7,S) = lag(τ1, 13,S) = −1/3, lag(τ2, 7,S) =

lag(τ2, 13,S) = 2/3, and lag(τ3, 7,S) = lag(τ3, 13,S) = 5/3.

Lemma 3.19. For any Xi > 0, if t is the first time instant such that lag(τi, t,S) > Xi, then τi does not

execute during [t− 1, t).

73

Proof. Since Xi > 0 and for any t′ ≤ Φi, lag(τi, t′,S) = 0 holds, we have t > Φi. Therefore, lag(τi, t −

1,S) ≤ Xi holds. Assume that τi executes during [t−1, t). By Lemma 3.16, lag(τi, t,S) ≤ lag(τi, t−1,S) ≤

Xi, a contradiction.

We now show that each task τi’s lag cannot exceed (H + Yi − Ymin)ui. Informally, assume that t is the

first time instant where a task τi’s lag exceeds (H + Yi − Ymin)ui in S . If [t−H, t) is a busy-interval, then

by Lemma 3.17 (LAG does not increase over a busy interval) and Corollary 3.1 (LAG-monotonicity), LAG

at t −H and t must be the same in S, which by Lemma 3.18 implies τi’s lag at t −H and t is also same.

Otherwise, if there is a non-busy instant tb in [t−H, t), then by Lemma 3.14, τi’s ready job’s priority must

be higher than any job released at or after tb throughout [tb, t). Therefore, τi would execute continuously

throughout [tb, t), violating Lemma 3.19. We now give the formal proof.

Lemma 3.20. For any task τi and any time instant t in S, lag(τi, t,S) ≤ (H + Yi − Ymin)ui.

Proof. We use Figure 3.3 to illustrate the proof. Assume that there is a time instant t such that there is a task

τi with lag(τi, t,S) > (H + Yi − Ymin)ui and let t be the first such time instant. Since I executes τi at the

rate of ui, lag(τi, t′,S) ≤ Hui holds for any t′ ≤ Φi +H . Therefore, t > Φi +H ≥ H holds.

We first prove that [t − H, t) is a busy interval. Since t > H , [t − H, t) is a valid time interval. By

Lemma 3.2, there is a pending job of τi at time t because lag(τi, t,S) > 0. Let τi,k be the ready job of τi at

time t. By Lemma 3.14, we have

y(τi,k) ≤ t−
lag(τi, t,S)

ui
+ Yi

< {Since lag(τi, t,S) > (H + Yi − Ymin)ui}

t− (H + Yi − Ymin)ui
ui

+ Yi

= t−H + Ymin. (3.18)

By (3.1), we have

r(τi,k) = y(τi,k)− Yi

< {By (3.18)}

t−H + Ymin − Yi

74

Timet−H t−H + Ymin t− 1 t

τi,k

y(τi,k)

τj,ℓ

y(τj,ℓ)

τp,1

y(τp,1)

Release

Deadline

PP

Completion

Figure 3.3: Illustration of the proof of Lemma 3.20.

≤ {Since Ymin ≤ Yi}

t−H. (3.19)

Thus, by Definition 2.4, τi,k is pending throughout [t − H, t). Since t is the first time instant with

lag(τi, t,S) > (H + Yi − Ymin)ui, by Lemma 3.19, τi,k does not execute during [t− 1, t). Thus, there are

at least M tasks with higher priority jobs than τi,k at time t − 1. Let Γh be the set of tasks having higher

priority jobs than τi,k at time t− 1. Then, |Γh| ≥ M holds. By the definition of Γh, for any task τj ∈ Γh,

y(τj,ℓ) ≤ y(τi,k) holds where τj,ℓ is the ready job of τj at time t− 1 (see Figure 3.3). By a calculation similar

to that yielding (3.19), r(τj,ℓ) < t−H holds, which implies τj,ℓ is pending throughout [t−H, t). Thus, by

(3.18) we have the following property.

Property 3.2. Each task in Γh∪{τi} has pending jobs with PPs less than t−H+Ymin throughout [t−H, t).

By Property 3.2, [t−H, t) is a busy interval. By Lemma 3.17, we therefore have

LAG(Γ, t,S) ≤ LAG(Γ, t−H,S). (3.20)

We now consider two cases.

Case 1. t ≥ Φmax +H . By Corollary 3.1, we have

LAG(Γ, t,S) ≥ LAG(Γ, t−H,S). (3.21)

75

By (3.20) and (3.21), we have

LAG(Γ, t,S) = LAG(Γ, t−H,S). (3.22)

Since t ≥ Φmax +H and (3.22) holds, by Lemma 3.18, lag(τi, t,S) = lag(τi, t−H,S) holds. Therefore, t

cannot be the first time instant with lag(τi, t,S) > (H + Yi − Ymin)ui.

Case 2. t < Φmax +H . Let Γs be the set of tasks such that for each τp ∈ Γs, t−H < Φp ≤ Φmax holds.

Since each task τp ∈ Γs releases its first job after t −H , r(τp,1) > t −H and lag(τp, t −H,S) = 0 hold

(see Figure 3.3). Thus, by (3.1) and Yp ≥ Ymin, we have

∀τp ∈ Γs : y(τp,1) > t−H + Ymin. (3.23)

By Property 3.2 and (3.23), no task τp ∈ Γs executes during [t−H, t). Therefore, we have

∀τp ∈ Γs : lag(τp, t,S) ≥ 0 = lag(τp, t−H,S). (3.24)

By the definition of Γs, for any task τq ∈ Γ \ Γs, t−H ≥ Φq holds, which implies t ≥ Φq +H . Therefore,

by Lemma 3.13, we have

∀τq ∈ Γ \ Γs : lag(τq, t,S) ≥ lag(τq, t−H,S). (3.25)

Since t is the first time instant with lag(τi, t,S) > (H+Yi−Ymin)ui > 0, lag(τi, t′,S) ≤ (H+Yi−Ymin)ui

holds for any t′ < t. Thus, we have

lag(τi, t,S) > lag(τi, t−H,S). (3.26)

By (3.5), we have

LAG(Γ, t,S) =
∑
τj∈Γ

lag(τj , t,S)

=
∑
τj∈Γs

lag(τj , t,S) +
∑

τj∈Γ\(Γs∪{τi})

lag(τj , t,S) + lag(τi, t,S)

> {By (3.24), (3.25), and (3.26)}

76

∑
τj∈Γs

lag(τj , t−H,S) +
∑

τj∈Γ\(Γs∪{τi})

lag(τj , t−H,S) + lag(τi, t−H,S)

= LAG(Γ, t−H,S),

a contradiction to (3.20).

We now give our tardiness bound in the following Theorem.

Theorem 3.1. The response time of task τi is at most Ti +H + Yi − Ymin in S.

Proof. The theorem follows from Lemmas 3.15 and 3.20.

Therefore, for pseudo-harmonic periodic systems, we have the following theorem.

Theorem 3.2. For a pseudo-harmonic task system Γ, the response time of a task τi is at most Ti + Tmax +

Yi − Ymin in S.

By Theorem 3.2, we have following response-time bounds under G-EDF and G-FIFO. Note that G-EDF

scheduling assumes Di = Ti.

Theorem 3.3. For a pseudo-harmonic task system Γ, the response time of a task τi in a G-EDF and G-FIFO

schedule is at most Ti + Tmax + Ti − Tmin and Ti + Tmax, respectively.

Removing Assumption 3.1. Prior work has shown that removing Assumption 3.1 does not invalidate G-EDF

response-time bounds because its removal cannot cause work to shift later [Yang and Anderson, 2017], i.e.,

G-EDF is sustainable. It can be similarly removed for any GEL scheduler.

Theorem 3.4. Let Γ be a periodic task set, S be a GEL schedule of Γ satisfying Assumption 3.1, and S ′ be

a GEL schedule with the same PP for each job of Γ without satisfying Assumption 3.1. Then, no job in S ′

finishes later than in S.

Tightness. The following example shows the tightness of the tardiness bound in Theorem 3.2.

Example 3.2. Consider a task system Γ with M + 1 tasks where τi = (0,M,M + 1). For any JLFP

scheduler, the maximum response time among all tasks is Ti +M − 1 = Ti + Tmax − 2. For both G-FIFO

and G-EDF, the response-time bound of a task in Γ by Theorem 3.1 is Ti + Tmax. A G-EDF/G-FIFO

schedule corresponding to M = 5 is shown in Figure 3.4. Jobs τ6,1, τ5,2, and τ4,3 have response times of

10.0, 9.0, and 8.0 time units, respectively. Similarly, τ3,4 has response time of 7.0 time units (not shown in

Figure 3.4). τ1 and τ2 have no tardy job. The schedule repeats after 30.0 time units. ◀

77

Time

τ1,1 τ1,2 τ1,3 τ1,4

τ2,1 τ2,2 τ2,3 τ2,4

τ3,1 τ3,2 τ3,3

τ4,1 τ4,2 τ4,3

τ5,1 τ5,2 τ5,3

τ6,1 τ6,2 τ6,3

τ1

τ2

τ3

τ4

τ5

τ6

0 5 10 15 20

Release

Deadline

Completion

Execution

Figure 3.4: Schedule corresponding to Example 3.2
.

Time

τi,k

τi

τSi,ℓ−1

τSi

τSi,ℓ

Release

Deadline

Completion

PP

Execution

Server Execution

Figure 3.5: Scheduling sporadic tasks by GEL-scheduled periodic servers.

Sporadic tasks. We can enable similar response-time bounds for sporadic tasks using GEL-scheduled

periodic servers. For each task τi, we create a server task τ si = (0, Ci, Ti). We schedule the server tasks by a

GEL scheduler where each server job of τ si receives an allocation of exactly Ci time units. We schedule job

τi,k on server job τ si,ℓ where d(τi,k) ∈ (r(τi,ℓ)
s, d(τi,ℓ)

s] (see Figure 3.5). Since both τi and τ si have the same

period, no other job of τi is scheduled on τ si,ℓ. Since τ si,ℓ receives allocation of Ci time units, τi,k finishes

execution at or before τ si,ℓ completes. Since d(τi,ℓ)s − d(τi,k) ≤ Ti, we have the following theorem.

Theorem 3.5. A pseudo-harmonic sporadic task system Γ can be scheduled using periodic servers scheduled

by a GEL scheduler such that each task τi’s response time is at most 2Ti + Tmax + Yi − Ymin.

Discussion. While the response-time bound given in Theorem 3.1 is tight in general, the response-time

bound is not tight for task systems with a smaller total utilization than M . For instance, an HRT-schedulable

task system also has the response-time bound specified in Theorem 3.1. Although the response-time bounds

78

in [Devi and Anderson, 2008; Erickson et al., 2014; Valente, 2016] can have smaller bounds when the

total utilization is less than M compared to systems with full utilization, they also have similar issues, e.g.,

response-time bounds larger than relative deadlines for HRT-schedulable task systems.

Although the response-time bound given in Theorem 3.2 is Ti + Tmax under G-FIFO, the response-time

bound under G-EDF can be larger than Ti+Tmax. The response time of a task can actually exceed Ti+Tmax

under G-EDF as illustrated in the following example.

Example 3.3. Consider a task system with five tasks τ1 = (1, 4, 5), τ2 = (3, 3, 4), τ3 = (9, 19, 25),

τ4 = (20, 99, 100), τ5 = (75, 70, 100) scheduled on four processors by G-EDF. It can be shown that the

tardiness of the job τ4,48 is 204 time units, which is Ti + Tmax + 4. ◀

3.2.3 An Alternate Response-Time Bound

Although Theorem 3.1 provides a response-time bound that is tight within a constant factor for pseudo-

harmonic task systems, the bound can be overly pessimistic for systems with low total utilizations. To mitigate

this pessimism, we now derive a response-time bound based on the per-task lag upper bound established in

Lemma 3.20. Using a technique similar to that in [Devi and Anderson, 2005], we prove Theorem 3.6.

Definition 3.4. For any non-negative integer ℓ, letHℓ denote the sum of the ℓ largest values of (H + Yi −

Ymin)ui. Thus,Hℓ =
∑

ℓ highest(H + Yi − Ymin)ui. ◀

Theorem 3.6. The response time of task τi is at most Yi + x+ Ci in S, where

x ≥
H⌈Utot⌉−1 +

∑N
j=1max{(Tj − Yj)uj , 0} − Ci

M
. (3.27)

We prove Theorem 3.6 by induction on job priorities. We consider an arbitrary job τi,k and inductively

prove that its response time is no more than Yi + x+ Ci in S. Thus, we assume the following.

Assumption 3.2. The response time of each job with higher priority than τi,k is at most Yi + x+ Ci in S.

We now denote the jobs considered in Assumption 3.2 as follows.

Definition 3.5. Let ψ be the set of jobs that have higher priorities than τi,k. Let Ψ = ψ ∪ {τi,k}. Let S ′

(resp., I ′) be the schedule of S (resp., I) corresponding to the jobs Ψ. ◀

79

In schedule S, job τi,k can only be delayed by the jobs in ψ = Ψ \ τi,k. Note that jobs not in Ψ may be

scheduled before τi,k when fewer than M jobs in Ψ are ready; however, such jobs will be preempted once

new jobs in Ψ are released. Therefore, we only need to consider schedule S ′ to derive a response-time bound

for τi,k in S. The following lemma formally proves this.

Lemma 3.21. The response time of each job τj,ℓ ∈ Ψ in S is at most its response time in S ′.

Proof. Assume otherwise. Let t be the earliest time instant at which a job, call it τj,ℓ, in Ψ completes

execution in S ′ but not in S. Then, there exists a time instant t′ < t such that τj,ℓ executes in S ′ but not in

S. Since τj,ℓ executes at t′ in S ′, τj,ℓ−1 (if any) must have completed execution at or before t′ in S ′. By

the definition of t, τj,ℓ−1 (if any) also completes execution at or before t′ in S. Therefore, by Definition 2.5

and Pi = 1, τj,ℓ is ready at time t′ in S. Since τj,ℓ does not execute at time t′ in S, M tasks other than τj

must have higher-priority jobs executing at t′ in S. By Definition 3.5, these jobs are in Ψ. By the definition

of t′, the jobs that execute at time t′ in S have not completed execution by time t′ in S ′. Therefore, there

are M tasks with higher-priority jobs than τj,ℓ at t′ in S ′, implying that τj,ℓ cannot execute at t′ in S ′, a

contradiction.

To derive a response-time bound for τi,k in S, we first upper bound LAG in S ′ at time y(τi,k). For

notational convenience, let ty = y(τi,k) and tf = f(τi,k). We assume that tf > ty; otherwise, the response

time of τi,k is at most Yi ≤ Yi + x+ Ci, completing the proof.

Definition 3.6. Let t0 be the earliest time instant such that [t0, ty) is a busy interval (see Definition 3.3). ◀

Lemma 3.22. LAG(Γ, ty,S) ≤ H⌈Utot⌉−1.

Proof. We first upper bound LAG(Ψ, t0,S). By Definitions 3.6 and 3.3, there are at most ⌈Utot⌉ − 1 tasks

with pending jobs at time t0 − 1. Therefore, any task τj with no pending job at time t0 − 1 either releases a

new job at time t0 or has no pending job at time t0. If τj releases a new job at t0, then lag(τj , t0,S ′) = 0,

as all jobs of τj that are released before t0 complete execution by t0. If τj has no pending job at t0, the by

Lemma 3.4, lag(τj , t0,S ′) < 0 holds. Thus, only tasks that have pending jobs at time t0−1 can have positive

lag at time t0. Since there are at most ⌈Utot⌉ − 1 tasks with pending jobs at time t0 − 1, by Lemma 3.20,

Definition 3.4 and (3.5), we have

LAG(Γ, t0,S ′) ≤ H⌈Utot⌉−1.

Since [t0, ty) is a busy interval, by Lemma 3.17, we have LAG(Γ, ty,S ′) ≤ H⌈Utot⌉−1.

80

Let W be the total remaining workload of Γ at time ty in S ′. The following lemma upper bounds W .

Lemma 3.23. W ≤Mx+ Ci.

Proof. Let W1,W2, . . . ,WN denote the remaining workloads of tasks τ1, τ2, . . . , τN , respectively, at time ty

in S ′. Thus, we have

W =
N∑
j=1

Wj . (3.28)

We now upper bound W by upper bounding each Wj . Let τj,1, τj,2, . . . , τj,ℓ be the jobs of τj that are in Ψ.

Since only jobs in Ψ are in Γ, the total workload of τj in S ′ is
∑ℓ

x=1Cj . Thus, in S ′, the remaining workload

of τj at time ty is

Wj =

ℓ∑
x=1

Cj − A(τj , 0, ty,S ′). (3.29)

Since Yj ≥ 0, no jobs released after ty are in Ψ. Therefore, r(τj,ℓ) ≤ ty. We now consider two cases.

Case 1. r(τj,ℓ) + Tj ≤ ty. By the definition of I ′, jobs τj,1, τj,2, . . . , τj,ℓ complete execution by time

ty in I ′. Since only jobs in Ψ are in Γ, A(τj , 0, ty, I ′) =
∑ℓ

x=1Cj . Thus, by (3.29), we have Wj =

A(τj , 0, ty, I ′)− A(τj , 0, ty,S ′) = LAG(τj , ty,S ′) ≤ LAG(τj , ty,S ′) + min{(Tj − Yj)uj , 0}.

Case 2. r(τj,ℓ) + Tj > ty. In this case, all jobs prior to τj,ℓ complete execution by time ty in I ′. Since

τj,ℓ starts execution at time r(τj,ℓ) in I ′, it executes for (ty − r(τj,ℓ))uj units by time ty in I ′. Thus,

A(τj , 0, ty, I ′) =
∑ℓ−1

x=1Cj + (ty − r(τj,ℓ))uj . By (3.29) and Tj = Cjuj , we have

Wj =

ℓ−1∑
x=1

Cj + Tjuj − A(τj , 0, ty,S ′)

=
ℓ−1∑
x=1

Cj + (r(τj,ℓ) + Tj − ty + ty − r(τj,ℓ))uj − A(τj , 0, ty,S ′)

=

ℓ−1∑
x=1

Cj + (ty − r(τj,ℓ))uj + (r(τj,ℓ) + Tj − ty)uj − A(τj , 0, ty,S ′)

= A(τj , 0, ty, I ′) + (r(τj,ℓ) + Tj − ty)uj − A(τj , 0, ty,S ′)

= {By (3.5)}

lag(τj , ty,S ′) + (r(τj,ℓ) + Tj − ty)uj

≤ {Since τj,ℓ ∈ Ψ, we have y(τj,ℓ) = r(τj,ℓ) + Yj ≤ ty}

lag(τj , ty,S ′) + (Tj − Yj)uj

81

≤ lag(τj , ty,S ′) + min{(Tj − Yj)uj , 0}.

Therefore, in both cases, Wj ≤ lag(τj , ty,S ′) + min{(Tj − Yj)uj , 0}. By (3.28), we have

W =
N∑
j=1

Wj

≤
N∑
j=1

(
lag(τj , ty,S ′) + min{(Tj − Yj)uj , 0}

)
= {By (3.6)}

LAG(Γ, ty,S ′) +
N∑
j=1

min{(Tj − Yj)uj , 0}

≤ {By Lemma 3.22}

H⌈Utot⌉−1 +

N∑
j=1

min{(Tj − Yj)uj , 0}

=M ·
H⌈Utot⌉−1 +

∑N
j=1min{(Tj − Yj)uj , 0} − Ci

M
+ Ci

≤ {By (3.27)}

Mx+ Ci.

Thus, the lemma holds.

Using the upper bound on remaining workload at time ty, we now prove Theorem 3.6.

Proof of Theorem 3.6. Assume that τi,j executes for ei time units by time ty. Thus, the remaining execution

time of τi,j at time ty is at most Ci − ei. Let ts be the first time instant at or after ty when τi,j is scheduled

in S ′. We prove the lemma by showing that ts ≤ ty + x+ ei. We first show that τi,k becomes ready at or

before time ty + x+ ei. By Assumption 3.2, τi,k−1 completes execution by time r(τi,k−1) + Yi + x+ Ci =

r(τi,k) − Ti + Yi + x + Ci = ty + x + Ci − Ti ≤ ty + x (since Ci ≤ Ti). Thus, τi,k−1 is ready by

time ty + x ≤ tx + x+ ei.

We now show that ts ≤ ty + x+ ei. Assume otherwise. Then, M tasks other than τi have pending jobs

at time ty +x+ ei. Since only jobs in Ψ are present in S ′, all M processors must be busy executing jobs in Ψ

during [ty, ty+x+ei+1). Thus, the total work performed during [ty, ty+x+ei+1) in S ′ isM(x+ei+1).

82

Since τi,j executes for ei time units by ty, the total remaining workload of Ψ at ty due to jobs other than τi,j is

W −Ci+ ei. Since only jobs in Ψ executes during [ty, ty +x+ ei), we have M(x+ ei+1) ≤W −Ci+ ei,

which implies that W ≥M(x+ ei + 1) + Ci − ei > Mx+ Ci, a contradiction to Lemma 3.23.

Thus, ts ≤ ty+x+ei. Since only jobs in Ψ are present in S ′, no jobs are released after time ty. Therefore,

τi,j continuously executes at or after time ts until it finishes. Thus, τi,k finishes by time ty+x+ei+Ci−ei =

ty + x+ Ci in S ′. Thus, by Lemma 3.21, the theorem holds.

3.3 Exact Response-Time Bound

Having derived a response-time bound for periodic tasks that is tight in general for the pseudo-harmonic

case, we now show how to derive an exact response-time bound. We do so by deriving an upper bound on the

length of the prefix of a schedule during which tasks may experience increasing response times (afterwards,

they do not). We show, in Lemma 3.27, that if there is a time instant t ≥ Φmax when LAG has the same

values at t and t −H , then for any t′ ≥ t, the LAG values at t′ and t′ −H are also equal. Intuitively, this

implies that the schedule in the interval [t −H, t) repeats after t. Moreover, since the lag of each task is

bounded (Lemma 3.20), we can derive an upper bound on LAG (Lemma 3.26). Therefore, since LAG does

not decrease over any interval of length H starting after Φmax (LAG-monotonicity), there must be a finite

interval [Φmax, t
′) such that LAG strictly increases over any interval of length H in [Φmax, t

′). We derive an

upper bound on such an interval in Lemma 3.31. Intuitively, for each task, a job with the maximum response

time of the task must complete at or before the schedule starts to repeat. We first consider task systems

satisfying Assumption 3.1. We define a response-time-increasing interval as follows.

Definition 3.7. Given a periodic task system Γ, a response-time-increasing interval in a schedule S is a finite

interval of time [0, t] such that for each task τi ∈ Γ, if the maximum response time of τi’s jobs that complete

execution at or before t is xi in S, then the response time of τi is xi in S. ◀

We now derive an upper bound on the response-time-increasing interval of a periodic task system Γ

satisfying Assumption 3.1.

Definition 3.8. Let F be the sum of the N − 1 largest values of Ci(1− ui); i.e.,

F =
∑

N−1 largest

Ci(1− ui).

83

Let G be the sum of the ⌈Utot⌉ − 1 largest values of (H + Yi − Ymin)ui; i.e.,

G =
∑

⌈Utot⌉−1 largest

(H + Yi − Ymin)ui.

Finally, let E = ⌈F +G+ 1⌉. ◀

The following lemma gives a trivial lower bound on the lag of a task at any time t in S. A task’s lag is

minimum when its active job finishes execution as early as possible in S, i.e., Ci time units after its release.

Lemma 3.24. For any task τi and time instant t, lag(τi, t,S) ≥ −Ci(1− ui).

Proof. If t ≤ Φi, then lag(τi, t,S) = 0, so assume t > Φi. Let τi,k be the job of τi with r(τi,k) ≤

t < r(τi,k+1) and ei be the total duration for which τi,k is scheduled at or before time t in S. Therefore,

A(Γ, τi, 0, t,S) =
∑k−1

j=1 Ci + ei. By the definition of I, all jobs of τi prior to τi,k complete execution by

time t in I. Since jobs can only execute after their release, by the time τi,k executes for ei units in S, τi,k

completed execution of at least eiui units in I. Therefore, A(Γ, τi, 0, t, I) ≥
∑k−1

j=1 Ci + eiui. Substituting

A(Γ, τi, 0, t, I) and A(Γ, τi, 0, t,S) in (3.3), we have lag(τi, t,S) ≥
∑k−1

j=1 Ci + eiui −
∑k−1

j=1 Ci − ei =

−ei(1− ui). Since ei ≤ Ci, we have lag(τi, t,S) ≥ −Ci(1− ui).

We now give a lower bound on LAG at Φmax in S. By the definition of Φmax, there is at least one task

with lag that equals 0 at Φmax.

Lemma 3.25. LAG(Γ,Φmax,S) ≥ −F .

Proof. Let Γ′ be the set of tasks such that for any τi ∈ Γ′, Φi = Φmax holds. Therefore, lag(τi,Φmax,S) = 0

holds for any τi ∈ Γ′. Thus,
∑

τi∈Γ′ lag(τi,Φmax,S) = 0. Hence, by (3.5), we have LAG(Γ,Φmax,S) =∑
τi∈Γ lag(τi,Φmax,S) =

∑
τi∈Γ\Γ′ lag(τi,Φmax,S), which by Lemma 3.24 implies, LAG(Γ,Φmax,S) ≥∑

τi∈Γ\Γ′ −Ci(1 − ui). By the definition of Φmax, |Γ′| ≥ 1 holds. Therefore, by Definition 3.8, we have

LAG(Γ,Φmax,S) ≥ −
∑

N−1 largest Ci(1− ui) = −F .

We now derive an upper bound on LAG at any time t in S by determining an upper bound on LAG at the

latest non-busy time instant at or before t.

Lemma 3.26. For any t, LAG(Γ, t,S) ≤ G.

84

Proof. Let tb be the latest non-busy time instant at or before t, otherwise let tb = 0. We first derive an upper

bound on LAG(Γ, tb,S). If tb = 0, then LAG(Γ, tb,S) = 0. Otherwise, let Γ′ ⊆ Γ be the tasks with pending

jobs at tb. By (3.5),

LAG(Γ, tb,S) =
∑
τi∈Γ′

lag(τi, tb,S) +
∑
τi /∈Γ′

lag(τi, tb,S)

≤ {By Lemma 3.2, (∀τi /∈ Γ′ : lag(τi, tb,S) ≤ 0) holds}∑
τi∈Γ′

lag(τi, tb,S)

≤ {By Lemma 3.20}∑
τi∈Γ′

(H + Yi − Ymin)ui

≤ {By Definition 3.3, |Γ′| < ⌈Utot⌉}∑
⌈Utot⌉−1 largest

(H + Yi − Ymin)ui

= {By Definition 3.8}

G.

By Lemma 3.17, LAG(Γ, t,S) ≤ LAG(Γ, tb,S) ≤ G holds.

Lemmas 3.25 and 3.26 imply that LAG cannot increase more than F + G units over any interval

[Φmax, t). We use this fact later in Lemma 3.31. We now show that once LAG(Γ, t,S) = LAG(Γ, t−H,S)

holds for some t, the equality also holds for all time instances after t. Informally, by Lemma 3.18, if

LAG(Γ, t,S) = LAG(Γ, t −H,S) holds, then for any task τi, lag(τi, t,S) = lag(τi, t −H,S) also holds.

This implies that the scheduling decisions at t are the same as at t−H . Therefore, the schedule in [t−H, t)

repeats in [t, t+H).

Lemma 3.27. If there is a time instant t′ ≥ Φmax +H such that LAG(Γ, t′ −H,S) = LAG(Γ, t′,S) holds,

then for any t ≥ t′, LAG(Γ, t−H,S) = LAG(Γ, t,S) holds.

Proof. Assume for a contradiction that there exists a t ≥ t′ such that LAG(Γ, t−H,S) ̸= LAG(Γ, t,S) and

let t be the first such time instant. By the definition of t and t′, t > t′ ≥ Φmax +H and t− 1 ≥ Φmax +H

85

hold. Therefore, LAG(Γ, t−H − 1,S) = LAG(Γ, t− 1,S) holds. Thus, by Lemma 3.18, we have

∀τi : lag(τi, t−H − 1,S) = lag(τi, t− 1,S). (3.30)

Since Ti divides H , by (3.30) and Lemma 3.11(a) (with t and c replaced by t−H − 1 and hi, respectively),

we have the following property.

Property 3.3. Any task with no pending job at t−H − 1 has no pending job at t− 1.

Let Γ′ ⊆ Γ be the set of tasks with pending jobs at t − H − 1. Let τi,k be the ready job of τi ∈ Γ′

at t − H − 1. By Definition 3.2, (3.30) and Lemma 3.11(b) (with t and c replaced by t − H − 1 and

hi, respectively), τi,k+hi
is the ready job of τi at t − 1. Since τi releases jobs periodically, we have

y(τi,k+hi
) = y(τi,k) + hiTi = y(τi,k) +H . Thus, the tasks in Γ′ have the same priority ordering at both

t−H − 1 and t− 1, which along with Property 3.3 implies that the same set of tasks execute during both

[t−H − 1) and [t− 1, t). Hence, A(Γ, t−H − 1, t−H,S) = A(Γ, t− 1, t,S). Since t−H − 1 ≥ Φmax,

we have A(Γ, t−H − 1, t−H, I) = A(Γ, t− 1, t, I). Thus, by (3.6) we have

LAG(Γ, t,S) = LAG(Γ, t− 1,S) + A(Γ, t− 1, t, I)− A(Γ, t− 1, t,S)

= {Since LAG(Γ, t− 1,S) = LAG(Γ, t+H − 1)}

LAG(Γ, t−H − 1,S) + A(Γ, t− 1, t, I)− A(Γ, t− 1, t,S)

= {Since A(Γ, t− 1, t,S) = A(Γ, t−H − 1, t−H,S) and

A(Γ, t− 1, t, I) = A(Γ, t−H − 1, t−H, I)}

= LAG(Γ, t−H − 1,S) + A(Γ, t−H − 1, t−H, I)− A(Γ, t−H − 1, t−H,S)

= {By (3.6)}

LAG(Γ, t−H,S),

a contradiction.

Lemma 3.28. If there is a time instant t′ ≥ Φmax +H such that LAG(Γ, t′ −H,S) = LAG(Γ, t′,S) holds,

then lag(τi, t−H,S) = lag(τi, t,S) holds for any t ≥ t′ and τi ∈ Γ.

Proof. Follows from Lemmas 3.27 and 3.18.

86

Using the above lemma, we now show that whenever LAG becomes equal at hyperperiod boundaries, S

starts to repeat.

Lemma 3.29. If there is a time instant t′ ≥ Φmax +H such that LAG(Γ, t′ −H,S) = LAG(Γ, t′,S) holds,

then for any t ≥ t′ and τi ∈ Γ, τi,k−hi
is ready at time t−H if and only if τi,k is ready at time t.

Proof. By Lemma 3.28, lag(τi, t−H,S) = lag(τi, t,S) holds. Assume that τi,k−hi
is ready at time t−H .

Then, by Lemma 3.11(b), τi,k is ready at time t. Similarly, assuming τi,k is ready at time t and applying

Lemma 3.11(b), τi,k−hi
is ready at time t−H .

Lemma 3.30. If there is a time instant t′ ≥ Φmax +H such that LAG(Γ, t′ −H,S) = LAG(Γ, t′,S) holds,

then for any t ≥ t′ and τi ∈ Γ, τi,k−hi
is scheduled at time t−H if and only if τi,k is scheduled at time t.

Proof. Follows from Lemma 3.30, (3.1), and prioritization Rule PR.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), LAG(Γ, 6,S) = LAG(Γ, 12,

S) holds. Therefore, for all tasks τi and t ≥ 12, LAG(Γ, t − H,S) = LAG(Γ, t,S) = 2 and lag(τi, t −

H,S) = lag(τi, t,S) hold. We now show that there is a time instant t after Φmax + H and at or before

Φmax + EH where LAG has the same value at t and t −H . Therefore, the schedule starts to repeat at or

before Φmax + EH . Intuitively, LAG must increase by at least 1.0 execution unit, if not equal, over each

interval [Φmax + iH,Φmax + (i + 1)H) where 0 ≤ i < E. Therefore, since E = ⌈F + G + 1⌉, LAG at

Φmax + EH must be more than G, contradicting Lemma 3.26.

Lemma 3.31. There is a time instant t ∈ [Φmax+H,Φmax+EH] such that LAG(Γ, t−H,S) = LAG(Γ, t,S)

holds.

Proof. Assume LAG(Γ, t − H,S) ̸= LAG(Γ, t,S) holds for all t ∈ [Φmax + H,Φmax + EH]. Let t be

any arbitrary time instant in [Φmax +H,Φmax + EH]. Since t ≥ Φmax +H , by Corollary 3.1, we have

LAG(Γ, t−H,S) ≤ LAG(Γ, t,S). Thus, LAG(Γ, t−H,S) < LAG(Γ, t,S) holds. Since tasks release jobs

periodically and t−H ≥ Φmax holds, we have

A(Γ, t−H, t, I) = UtotH. (3.31)

87

Since Utot =
∑N

i=1
Ci
Ti

and hi = H/Ti, we have Utot =
∑N

i=1 hiCi

H . Therefore, UtotH =
∑N

i=1 hiCi. Since

both hi and Ci are integers, UtotH is also an integer. By (3.6), we have

A(Γ, t−H, t,S) = A(Γ, t−H, t, I) + LAG(Γ, t−H,S)− LAG(Γ, t,S)

< {Since LAG(Γ, t−H,S) < LAG(Γ, t,S)}

A(Γ, t−H, t, I)

= {Since A(Γ, t−H, t, I) = UtotH}

UtotH. (3.32)

Since UtotH and A(Γ, t−H, t,S) are integers, by (3.32) we have

A(Γ, t−H, t,S) ≤ UtotH − 1. (3.33)

Now, by (3.6), we have

LAG(Γ,Φmax + EH,S) = LAG(Γ,Φmax,S) + A(Γ,Φmax,Φmax + EH, I)− A(Γ,Φmax,Φmax + EH,S)

= {Since [Φmax,Φmax + EH) =
E−1⋃
i=0

[Φmax + iH,Φmax + (i+ 1)H)}

LAG(Γ,Φmax,S) +
E−1∑
i=0

(A(Γ,Φmax + iH,Φmax + (i+ 1)H, I)

− A(Γ,Φmax + iH,Φmax + (i+ 1)H,S))

≥ {Substituting t = Φmax + (i+ 1)H in (3.31) and (3.33)}

LAG(Γ,Φmax,S) +
E−1∑
i=0

(UtotH − UtotH + 1)

= LAG(Γ,Φmax,S) +
E−1∑
i=0

1

≥ {By Lemma 3.25 and Definition 3.8}

− F + F +G+ 1

> G,

88

a contradiction to Lemma 3.26.

Therefore, Lemma 3.31 establishes a simulation interval of Φmax +EH for S (by Lemma 3.30). Note

that, by Definition 3.8, E depends on task parameters, task count, and processor count. Thus, the simulation

interval contains pseudo-polynomial number of hyperperiods.

We now show that a job with the maximum response time must complete execution at or before

Φmax + EH by Lemma 3.32 and Theorem 3.7.

Lemma 3.32. If there is a time instant t′ ≥ Φmax +H such that LAG(Γ, t′ −H,S) = LAG(Γ, t′,S) holds

and xi is the maximum response time of any of task τi’s jobs that complete execution at or before t′ in S , then

the response time of τi is xi in S .

Proof. Assume that the response time of τi is more than xi and let τi,k be the first job with response

time exceeding xi. Let t be the time instant when τi,k finishes execution. Then, t > t′ holds. Since

LAG(Γ, t′ −H,S) = LAG(Γ, t′,S) and t− 1 ≥ t′ hold, by Corollary 3.28, we have lag(τi, t−H − 1,S) =

lag(τi, t − 1,S). Since hi = H/Ti and τi,k is pending at t − 1, substituting t and c in Lemma 3.11(b) by

t− 1 and −hi, respectively, τi,k−hi
is pending at t− 1−H . Therefore, τi,k−hi

finishes execution at or after

t−H . Hence, we have

f(τi,k−hi
)− d(τi,k−hi

) ≥ t−H − d(τi,k−hi
)

= {Since τi releases periodically, d(τi,k−hi
) = d(τi,k)− hiTi}

t−H − d(τi,k) + hiTi

= {By the definition of t and Definition 3.2}

f(τi,k)− d(τi,k).

Therefore, max{0, f(τi,k−hi
) − d(τi,k−hi

)} ≥ max{0, f(τi,k) − d(τi,k)} holds and τi,k’s response time

cannot exceed τi,k−hi
’s response time.

For the task system in Example 3.1 and its G-EDF schedule in Figure 3.1(b), LAG(Γ, t − H,S) =

LAG(Γ, t,S) holds for the first time at time 12. Job τ3,1 has the maximum response time in S.

Theorem 3.7. If the maximum response time of a task τi’s jobs that completes at or before Φmax +EH is xi

in S , then the response time of τi is xi in S.

89

Proof. By Lemma 3.31, there is a time instant t ∈ [Φmax +H,Φmax +EH] such that LAG(Γ, t−H,S) =

LAG(Γ, t,S) holds. Let zi be the maximum response time of τi’s jobs that complete execution at or before t

in S . By Lemma 3.32, the response time of τi is zi. Since t ∈ [Φmax +H,Φmax +EH], by the definition of

xi, zi ≤ xi holds. Since the response time of τi in S is zi, zi ≥ xi holds. Therefore, xi = zi.

By Theorems 3.4 and 3.7, if the maximum response time of τi’s jobs that complete at or before

Φmax + EH is xi in a GEL schedule S satisfying Assumption 3.1, then τi’s response time is at most xi in a

GEL schedule S ′ not satisfying Assumption 3.1.

Deriving response times. By Theorem 3.7, we can determine an exact response-time bound of each task by

simulating a schedule up to time Φmax + EH . By Definition 3.8, we have F =
∑

N−1 largest Ci(1− ui) ≤∑N
i=1Ci =

∑N
i=1 Tiui ≤ H

∑N
i=1 ui ≤ mH . By Definition 3.8,G =

∑
⌈Utot⌉−1 largest(H+Yi−Ymin)ui ≤∑

M−1 largest(H + Ymax) = (M − 1)(H + Ymax) holds. Therefore, we have E = ⌈F + G + 1⌉ ≤

⌈MH + (M − 1)(H + Ymax) + 1⌉. For pseudo-harmonic systems, since scheduling decisions at each time

instant are determined in polynomial time and H = Tmax, simulating a schedule up to time Φmax +ETmax

takes pseudo-polynomial time. By Lemma 3.32, we can terminate the simulation early at time t ≥ Φmax+H

by checking whether LAG(Γ, t,S) = LAG(Γ, t−H,S) holds. This would require storing the last H values

of LAG at any time. We can also store one value of LAG at any time, e.g., the last time instant that is multiple

of H , and check for LAG-equality H time after the last-stored instance. This would require simulating for

at most H time units more than that required when H values of LAG are stored. We note that this method

can be adapted for non-pseudo-harmonic systems with H and G replaced with H and a corresponding upper

bound on LAG, respectively.

3.4 Experimental Evaluation

We now present the results of simulation experiments we conducted to evaluate our response-time bounds

and the effectiveness of our approach to derive exact response-time bounds.

We generated task systems randomly for systems with 4 to 32 processors. We chose light, medium, heavy,

or wide task utilizations, for which task utilizations were uniformly distributed in [0.01, 0.3], [0.3, 0.7], [0.7, 1],

and [0.01, 1], respectively. We chose the maximum task period from 100ms to 1000ms with a step size of

100ms. Each task period was chosen randomly from all factors of the maximum task period. In case there

was no task with the maximum period, we randomly chose a task and scaled its parameters to set its period to

90

the maximum period. We rounded down each execution cost to its nearest integer and disregarded any task if

its execution cost became zero. We chose the offset of each task randomly between 0 and its period. For

each utilization cap M and utilization distribution, we generated 1,000 task systems by adding tasks until five

attempts to add a next task without exceeding the utilization cap failed.

We used relative response-time bounds as our evaluation metric, where a task’s relative response-time

bound is computed by dividing its response time by its period. For each task system, we computed exact

response-time bounds using Theorem 3.7 and response-time bounds using Theorems 3.1 and 3.6 (taking the

minimum among these two bounds) under G-EDF (EDF-EXT and EDF-TGT, respectively) and G-FIFO

(FIFO-EXT and FIFO-TGT, respectively). We also computed response-time bounds under G-EDF (resp.,

G-FIFO) using methods by Devi and Anderson [Devi and Anderson, 2008] (EDF-DA) and Erickson et

al. [Erickson et al., 2014] (EDF-EAW) (resp., Leontyev and Anderson [Leontyev and Anderson, 2007]

(FIFO-LA) and Erickson et al. [Erickson et al., 2014] (FIFO-EAW)). We did not compare against the bound

under G-EDF from [Valente, 2016] as it is computationally expensive to compute and has trends similar to

EDF-DA [Valente, 2016] (In our attempt to compute response-time bounds from [Valente, 2016] using the

most efficient implementation from [Leoncini et al., 2019], we found that computing tardiness bounds for a

task system on 16 or more processors can take several hours to complete). We measured the time taken to

compute EDF-EXT and FIFO-EXT for each task system. We present a representative selection of our results

in Figures 3.6–3.11.

Observation 3.1. For heavy utilizations, the average relative response-time bound for EDF-TGT was 64.77%

and 43.31% larger than for EDF-DA and EDF-EAW, respectively. The maximum relative response-time

bound for EDF-TGT was 42.06% and 43.17% smaller than for EDF-DA and EDF-EAW, respectively. The

average and maximum relative response-time bounds for FIFO-TGT were 35.01% and 76.20% smaller (resp.,

42.93% larger and 45.75% smaller) than for FIFO-LA (resp., FIFO-EAW), respectively.

This can be seen in insets (a) and (b) of Figures 3.6 and 3.7. For heavy task utilizations, the mean for

EDF-DA and EDF-EAW (resp., FIFO-EAW) were smaller than EDF-TGT (resp., FIFO-TGT). This is

because the relative response-time bounds for EDF-TGT and FIFO-TGT are similar for every task in a

system and contain Tmax causing large relative response-time bounds for tasks with small periods. However,

the maximum for EDF-DA and EDF-EAW (resp., FIFO-EAW) are generally larger than EDF-TGT (resp.,

FIFO-TGT).

91

5 10 15 20 25 30
Processor Count

0
50

100
150
200
250
300
350

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

EDF-TGT EDF-DA EDF-EAW EDF-EXT

(a) Average relative response-time bound for heavy task
utilizations with respect to processor count.

5 10 15 20 25 30
Processor Count

0

500

1000

1500

2000

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

EDF-TGT EDF-DA EDF-EAW EDF-EXT

(b) Maximum relative response-time bound for heavy task
utilizations with respect to processor count.

5 10 15 20 25 30
Processor Count

0
10
20
30
40
50
60
70
80

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

EDF-TGT EDF-DA EDF-EAW EDF-EXT

(c) Average relative response-time bound for light task
utilizations with respect to processor count.

5 10 15 20 25 30
Processor Count

0

100

200

300

400

500

600

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

EDF-TGT EDF-DA EDF-EAW EDF-EXT

(d) Maximum relative response-time bound for light task
utilizations with respect to processor count.

Figure 3.6: Average and maximum response-time bound under G-EDF with respect to the number of
processors.

Observation 3.2. For light utilizations, the average and maximum relative response-time bounds for EDF-

TGT were 1091.6% and 561.14% (resp., 470.23% and 276.43%) larger than for EDF-DA (resp., EDF-EAW),

respectively. The average and maximum relative response-time bounds for FIFO-TGT were 201.58% and

69.69% (resp., 288.16% and 113.52%) larger than for FIFO-LA (resp., FIFO-EAW), respectively.

This can be seen in insets (c) and (d) of Figures 3.6 and 3.7. EDF-DA (resp., FIFO-LA) is tighter than

EDF-TGT (resp., FIFO-TGT) for light per-task utilizations. This is because EDF-DA and FIFO-LA are

functions of the sum of largest ⌈Utot⌉ − 1 task utilizations and task WCETs. When task utilizations are small,

task WCETs are also smaller, leading to tighter response-time bounds for EDF-DA, EDF-EAW, FIFO-LA,

and FIFO-EAW.

92

5 10 15 20 25 30
Processor Count

0

100

200

300

400

500

600
Av

er
ag

e
Re

la
tiv

e
 R

es
po

ns
e

Ti
m

e
FIFO-TGT FIFO-LA FIFO-EAW FIFO-EXT

(a) Average relative response-time bound for heavy task
utilizations with respect to processor count.

5 10 15 20 25 30
Processor Count

0

1000

2000

3000

4000

5000

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

FIFO-TGT FIFO-LA FIFO-EAW FIFO-EXT

(b) Maximum relative response-time bound for heavy task
utilizations with respect to processor count.

5 10 15 20 25 30
Processor Count

20

40

60

80

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

FIFO-TGT FIFO-LA FIFO-EAW FIFO-EXT

(c) Average relative response-time bound for light task
utilizations with respect to processor count.

5 10 15 20 25 30
Processor Count

100
200
300
400
500
600
700
800

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

FIFO-TGT FIFO-LA FIFO-EAW FIFO-EXT

(d) Maximum relative response-time bound for light task
utilizations with respect to processor count.

Figure 3.7: Average and maximum response-time bound under G-FIFO with respect to the number of
processors.

Observation 3.3. Across all task systems, the average relative response time for EDF-EXT and FIFO-EXT

was 0.83 and 1.47, respectively. The maximum relative response time for EDF-EXT and FIFO-EXT was

37.5 and 101.2, respectively.

This can be seen in Figures 3.6 and 3.7. Average and maximum relative response time are usually smaller

under G-EDF than G-FIFO. Note that relative response times are normalized bounds with respect to task

periods. Under G-FIFO, tasks with small periods can have large response times if they their execution is

delayed by earlier released “long” jobs. Such jobs have large response times. In contrast, under G-EDF,

typically tasks with large periods are preempted multiple times, leading to their large response times. However,

average and maximum response time can be larger under G-EDF than G-FIFO (see Example 3.3).

Observation 3.4. EDF-TGT, EDF-DA, EDF-EAW, FIFO-TGT, FIFO-LA, and FIFO-EAW increased with

respected to the maximum task period.

93

200 400 600 800 1000
Maximum Task Period

0
100
200
300
400
500
600

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

EDF-TGT EDF-DA EDF-EAW EDF-EXT

(a) Average relative response-time bound for wide task
utilizations with respect to task periods.

200 400 600 800 1000
Maximum Task Period

0
500

1000
1500
2000
2500
3000
3500

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

EDF-TGT EDF-DA EDF-EAW EDF-EXT

(b) Maximum relative response-time bound for wide task
utilizations with respect to task periods.

200 400 600 800 1000
Maximum Task Period

0
100
200
300
400
500
600

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

FIFO-TGT FIFO-LA FIFO-EAW FIFO-EXT

(c) Average relative response-time bound for wide task
utilizations with respect to task periods.

200 400 600 800 1000
Maximum Task Period

0

2000

4000

6000

8000

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

FIFO-TGT FIFO-LA FIFO-EAW FIFO-EXT

(d) Maximum relative response-time bound for wide task
utilizations with respect to task periods.

Figure 3.8: Average and maximum response-time bound under G-FIFO with respect to the number of
processors.

This can be seen in insets (a)–(d) of Figure 3.8. Under G-EDF scheduling, EDF-TGT includes both the

maximum task period and task deadlines, resulting in a greater increase in average response-time bounds with

respect to the maximum period compared to EDF-DA and EDF-EAW. In contrast, for G-FIFO scheduling,

the average and maximum response-time bounds for FIFO-TGT increase at similar rates compared to

FIFO-LA and FIFO-EAW as the maximum task period increases.

To compare exact response-time bounds under G-FIFO and G-EDF with respect to system utilization,

we considered a 24-processor platform and generated 1,000 task systems for each utilization cap within

[2, 24] with a step size of 2. In addition to G-FIFO and G-EDF, we also derived exact response-time bound

(GFL-EXT) under global fair-lateness (G-FL) scheduler, which achieves smallest response-time bounds

among all GEL schedulers under analysis techniques of Erickson et al. [Erickson et al., 2014]. Insets (a), (b),

and (c) of Figure 3.9 present the results.

94

5 10 15 20 25
System Utilization

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

EDF-EXT
FIFO-EXT
GFL-EXT

(a) Average exact relative response-time bound for heavy task
utilizations with respect to system utilization.

5 10 15 20 25
System Utilization

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Av
er

ag
e

Re
la

tiv
e

 R
es

po
ns

e
Ti

m
e

EDF-EXT
FIFO-EXT
GFL-EXT

(b) Average exact relative response-time bound for light task uti-
lizations with respect to system utilization.

5 10 15 20 25
System Utilization

2

4

6

8

10

M
ax

im
um

 R
el

at
iv

e
 R

es
po

ns
e

Ti
m

e

EDF-EXT
FIFO-EXT
GFL-EXT

(c) Maximum exact relative response-time bound for wide task
utilizations with respect to system utilization.

Figure 3.9: Average and maximum response-time bound with respect to system utilizations.

Observation 3.5. The average and maximum relative response times for EDF-EXT and GFL-EXT were

smaller than FIFO-EXT.

Figure 3.10 presents average and maximum simulation length for EDF-EXT and FIFO-EXT. In general,

simulation interval lengths for G-EDF were larger than G-FIFO.

95

5 10 15 20 25 30
Processor Count

200

400

600

800
Av

er
ag

e
Si

m
ul

at
io

n
Le

ng
th

 (N
um

be
r o

f H
yp

er
pe

rio
ds

)
EDF-EXT
FIFO-EXT

(a) Average simulation length vs. processor count.

5 10 15 20 25 30
Processor Count

200

400

600

800

1000

1200

M
ax

im
um

 S
im

ul
at

io
n

Le
ng

th
 (N

um
be

r o
f H

yp
er

pe
rio

ds
)

EDF-EXT
FIFO-EXT

(b) Maximum simulation length vs. processor count.

200 400 600 800 1000
Maximum Task Period

200

400

600

800

Av
er

ag
e

Si
m

ul
at

io
n

Le
ng

th
 (N

um
be

r o
f H

yp
er

pe
rio

ds
)

EDF-EXT
FIFO-EXT

(c) Average simulation length vs. maximum task period.

200 400 600 800 1000
Maximum Task Period

200
400
600
800

1000
1200

M
ax

im
um

 S
im

ul
at

io
n

Le
ng

th
 (N

um
be

r o
f H

yp
er

pe
rio

ds
)

EDF-EXT
FIFO-EXT

(d) Maximum simulation length vs. maximum task period.

Figure 3.10: Average and maximum simulation lengths.

Observation 3.6. Across all task systems, the average simulation length for EDF-EXT and FIFO-EXT was

167.47 and 23.32 hyperperiods. The maximum simulation length for EDF-EXT and FIFO-EXT was 1249.36

and 577.84 hyperperiods.

Figure 3.11 presents computation time for EDF-EXT and FIFO-EXT. These plots imply that exact

response-time bounds can often be efficiently computed. The average and maximum simulation time for

EDF-EXT are larger than FIFO-EXT due to larger simulation lengths and more preemptions. The running

time increases when the number of processors is large. Note that the running time may increase significantly

when Tmax is large.

Observation 3.7. Across all task systems, the average time to compute EDF-EXT and FIFO-EXT was 6.7

and 0.55 sec, respectively. The maximum time to compute EDF-EXT and FIFO-EXT was 146.03 and 5.79

sec, respectively. (These computations were done on 2.50 GHz Intel processors with 30M cache and 32GB

RAM.)

96

5 10 15 20 25 30
Processor Count

0
10
20
30
40
50
60
70
80

Av
er

ag
e

Si
m

ul
at

io
n

 T
im

e
(S

ec
)

EDF-EXT
FIFO-EXT

(a) Average simulation time vs. processor count.

5 10 15 20 25 30
Processor Count

0
20
40
60
80

100
120
140

M
ax

im
um

 S
im

ul
at

io
n

 T
im

e
(s

ec
)

EDF-EXT
FIFO-EXT

(b) Maximum simulation time vs. processor count.

200 400 600 800 1000
Maximum Task Period

0
10
20
30
40
50
60
70

Av
er

ag
e

Si
m

ul
at

io
n

 T
im

e
(S

ec
)

EDF-EXT
FIFO-EXT

(c) Average simulation time vs. maximum task period.

200 400 600 800 1000
Maximum Task Period

0
20
40
60
80

100
120
140

M
ax

im
um

 S
im

ul
at

io
n

 T
im

e
(s

ec
)

EDF-EXT
FIFO-EXT

(d) Maximum simulation time vs. maximum task period.

G-EDF G-FIFO

0

20

40

60

80

100

120

140

Si
m

ul
at

io
n

Ti
m

e

(e) Simulation time for G-EDF and G-FIFO.

Figure 3.11: Average and maximum simulation time.

3.5 Chapter Summary

In this chapter, we have presented a response-time bound for periodic tasks under GEL schedulers. This is

the first response-time bound for pseudo-harmonic systems under GEL scheduler that does not increase with

respect to the number of tasks or processors. We have shown the tightness of our bound for pseudo-harmonic

periodic tasks and provided a method to determine similar response-time bounds for sporadic tasks. We have

97

also provided a method to compute exact response-time bounds for pseudo-harmonic periodic tasks under

GEL schedulers.

98

CHAPTER 4: SERVER-BASED SCHEDULING OF DAG TASKS1

In this chapter, we consider the scheduling of SRT DAG tasks on an identical multiprocessor. Since the

concurrent execution of the same task is common in many applications involving DAG tasks, e.g., computer

vision applications, we consider each task to be specified under the rp model. Therefore, we must deal with

all sources of interference and dependencies mentioned in Table 2.3.

To deal with such challenges, we give a server-based scheduling technique and show that this scheduler

is SRT-optimal. The design of server-based scheduling is motivated by the goal of applying simulation-based

response-time analysis techniques, presented in Chapter 3, to derive exact response-time bounds of DAG

tasks under the rp model. Recall that a simulation-based approach involves upper bounding both the time to

reach schedule repetition (transient state) and the period of schedule repetition (steady state). This is difficult

for DAG tasks, mainly due to variations in node activation times caused by precedence constraints. Using

per-node reservation servers allows us to provide an upper bound on the processor capacity allocated to a

node over a hyperperiod, a property that we exploit to ensure schedule repetition of DAG tasks.

Organization. After covering needed background (Section 4.1), we describe our server-based approach

(Section 4.2), explain how to obtain exact DAG response-time bounds (Sections 4.3 and 4.4), discuss our

experiments (Section 4.5), and provide a summary (Section 4.6).

4.1 System Model

In this section, we present the considered DAG task model. Table 4.1 summarizes the notation given

here.

Task model. We consider a task system Γ consisting of N periodic DAG tasks to be scheduled on M

identical processors. Each DAG task Gv has nv nodes that represent sequential tasks {τv1 , τv2 , . . . , τvnv}. We

use the term node and task interchangeably. A directed edge from τvi to τvk represents a precedence constraint

1 Contents of this chapter previously appeared in preliminary form in the following paper:

Ahmed, S. and Anderson, J. (2022), Exact Response-Time Bounds of Periodic DAG Tasks under Server-Based Global
Scheduling, Proceedings of the 43rd IEEE Real-Time Systems Symposium, pages 349—358.

99

τ11

τ12 τ13

τ14

Figure 4.1: A DAG G1.

between the predecessor task τvi and the successor task τvi . The set of predecessors of τvi is denoted by

pred(τvi). Each DAG task Gv has a unique source task τv1 with no incoming edge and a unique sink task τvnv

with no outgoing edge. This assumption is made for simplicity; the results presented in this chapter are also

applicable to DAG tasks with multiple source and sink tasks.

Each DAG task Gv has a period T v. DAG task Gv releases a DAG job every T v time units. The jth

DAG job of Gv is denoted by Gv
j . DAG task Gv has an offset Φv, which is the time when Gv

1 is released. The

DAG job Gv
j consists of a job τvi,j for each task τvi in that DAG. Each job τvi,j is preemptive. The release time

and finish time of τvi,j are denoted by r(τvi,j) and f(τvi,j), respectively. The source task τvi releases its jth job

when Gv
j is released. The jth job of each non-source task is released once the jth job of all of its predecessor

tasks finish, i.e., r(τvi,j) = maxτvk∈pred(τ
v
i)
{f(τvk,j)}.

The response time of job τvi,j is f(τvi,j) − r(τv1,j), i.e., the time duration between the source task’s job

release and τvi,j’s completion. The response time of task τvi is supj{f(τvi,j) − r(τv1,j)}. A DAG job Gv
j

completes when τvnv ,j finishes, i.e., when all jobs associated with the DAG job complete. Gv
j ’s response

time equals the response time of corresponding job τvnv ,j of the sink task. Gv’s response time equals τvnv ’s

response time.

Example 4.1. Figure 4.1 depicts a DAG G1. The source and sink tasks of G1 are τ11 and τ41 , respectively.

The first DAG job G1
1 of G1 consists of jobs τ11,1, τ

1
2,1, τ

1
3,1, and τ14,1. DAG job G1

1’s completes when all these

jobs complete execution. G1
1’s response time is the time difference between τ14,1’s completion time and τ11,1’s

release time. ◀

The WCET of τvi is denoted by Cv
i . The utilization of τvi is uvi = Cv

i /T
v. The utilization of Gv is

Uv =
∑nv

i=1 u
v
i . The total utilization of all DAG tasks is Utot =

∑N
v=1 U

v. We let Tmax = maxv{T v},

Cmax = maxv,i{Cv
i }, and Φmax = maxv{Φv}. The hyperperiod H is the LCM of all periods. A task

system is pseudo-harmonic if each period divides Tmax, i.e., H = Tmax holds.

100

Each DAG task can have a relative deadline. We do not explicitly specify DAG deadlines, as our

technique does not rely on it. We consider multiple DAG jobs of a DAG task can be present at the same time;

this happens for SRT DAG tasks or HRT DAG tasks with deadlines larger than periods. We assume that

concurrent execution of two jobs of a task is specified according to the rp model (recall from Section 2.1).

Thus, each task τvi has an arbitrary parallelization level P v
i , meaning that P v

i successive jobs of task τvi can

execute concurrently. We assume that different tasks of the same DAG task can have different parallelization

levels. Under the rp model, pending and ready jobs are defined as follows. Finally, we assume that the task

system Γ satisfies the following condition.

Utot ≤M ∧ (∀v, i : uvi ≤ P v
i)

Note that the above condition is an exact condition for SRT-feasibility of DAG task on identical multiproces-

sors (Theorem 2.1).

4.2 Server-Based Scheduling of DAG Tasks

To schedule DAG tasks, we adopt a server-based policy where a global scheduler allocates time to

per-node reservation servers, upon which task jobs are scheduled. To illustrate this scheduling, we first

introduce reservation servers.

Reservation servers. For each task τvi , we define a periodic reservation server Sv
i . We denote the set of all

servers as Γs. Each server Sv
i has a period T v and a budget Cv

i . Note that Sv
i ’s period and budget are the

same as Gv’s period and τvi ’s WCET, respectively. Each server Sv
i releases a (potentially infinite) sequence

of server jobs Sv
i,1, S

v
i,2, The release time and finish time of Sv

i,j are denoted by r(Sv
i,j) and f(Sv

i,j),

respectively. Server Sv
i releases its first job Sv

i,1 at time Φv. Its subsequent jobs are released periodically, i.e.,

Sv
i,j is released at time Φv + (j − 1)T v. Therefore, we have

∀v, i, j : r(Sv
i,j) = r(τv1,j).

We do not require deadlines to be hard, i.e., server jobs can miss their deadlines. Server Sv
i has a parallelization

level of P v
i matching that of τvi .

101

Table 4.1: Notation summary for Chapter 4.

Symbol Meaning

Γ Task system

N Number of DAG tasks

M Number of processors

Gv vth DAG

T v Period of Gv

Φv Offset of Gv

τvi ith task of Gv

Cv
i WCET of τvi

uvi Utilization of τvi
Sv
i Server of τvi
Y v
i RPP of Sv

i

R(·) Response-time bound of task or server

Utot Utilization of Γ

Tmax maxv{T v}

Φmax maxv{Φv}

H Hyperperiod

hv H/T v

τvi,j jth job of τvi
Sv
i,j jth job of Sv

i

r(·) Release time of job or server job

f(·) Completion time of τvi,j
y(Sv

i,j) PP of Sv
i,j

S An arbitrary schedule

I Ideal schedule

A(·) Allocation of job, task, or system (Definition 3.1)

lag(·) lag of job or task

LAG(·) LAG of Γ or Γs

∆ Definition 4.5

E,F,G Definition 4.6

102

Server jobs are scheduled according to a GEL scheduler. Thus, each server Sv
i has a relative PP, denoted

by Y v
i . Each server job has a PP y(Sv

i,j), which is determined as

y(Sv
i,j) = r(Sv

i,j) + Y v
i . (4.1)

Before elaborating on the scheduling of servers, we first give budget consumption and replenishment rules.

Replenishment Rule. The budget of Sv
i,j is replenished to Cv

i when it is released.

Consumption Rule. Sv
i,j consumes budget at the rate of one execution unit per unit of time

when it is scheduled until its budget is exhausted.

Similar to task jobs, we define pending and ready server jobs below.

Definition 4.1. A server job Sv
i,j is complete after its budget is exhausted. Sv

i,j is pending at time t if

r(Sv
i,j) ≤ t < f(Sv

i,j). S
v
i,j is ready if it is pending and Sv

i,j−P v
i

(if j > P v
i) is complete. ◀

Under GEL scheduling, the (up to) M ready server jobs with earliest PPs are scheduled. We assume ties

are broken arbitrarily but consistently by DAG and task indices. Thus, we modify the Rule PR in Chapter 2.2

as follows.

PR. Server job Sv
i,j has higher priority than server job Sw

k,ℓ if and only if

y(Sv
i,j) < y(Sw

k,ℓ) ∨
(
y(Sv

i,j) = y(Sw
k,ℓ) ∧ (v < w ∨ (v = w ∧ i < j))

)
.

Thus, if y(Sv
i,j) = y(Sw

k,ℓ) and y(Sv
i,p) = y(Sw

k,q), then Sv
i,j has higher priority than Sw

k,ℓ if and only

if Sv
i,p has higher priority than Sw

k,q. The response time of Sv
i,j (resp., Sv

i) is f(Sv
i,j) − r(Sv

i,j) (resp.,

supj{f(Sv
i,j)− r(Sv

i,j)}).

Example 4.2. Consider the DAG G1 shown in Figure 4.1. Assume that the period of G1 is 5.0 time units,

and C1
1 = 2.0, C1

2 = 3.0, C1
3 = 2.0, and C1

4 = 3.0. The parallelization level of each task is one. There are

four servers each corresponding to a task. Figure 4.2 illustrates a G-EDF schedule of these servers. Each

server has a period of 5.0 time units and releases is first server job at time 0 when τ11 releases its first job.

The server S1
2 corresponding to the task τ12 has a budget of 3.0 units. Server job S1

2,1’s budget is replenished

103

Time

τ11

τ12

τ13

τ14

S1
1

S1
2

S1
3

S1
4

0 5 10 15

Budget of S1
2

3

Release

Deadline

Completion

Task Execution

Server execution

Figure 4.2: Illustration of server-based scheduling for the DAG G1 in Figure 4.1. Blue arrows between job
and server job releases represent job linking.

to 3.0 units when S1
2,1 is released at time 0. It consumes its budget by one unit per unit of time when it is

scheduled. S1
2,1 completes at time 3 when its budget is exhausted. ◀

Scheduling tasks on servers. Jobs are scheduled on servers via the following rules.

R1. Jobs of τvi are scheduled on server jobs of Sv
i . A job τvi,j is linked to a single server job Sv

i,ℓ (via

Rule R2 given below) and at most one job can be linked to a server job.

R2. Assume that a server job Sv
i,ℓ is released at time t. If r(τvi,1) ≤ t holds and τvi,1 is not linked to any

server job at time t, then τvi,1 is linked to Sv
i,ℓ. Otherwise, if τvi,j is the last job of τvi that is linked to

some server job and r(τvi,j+1) ≤ t holds, then τvi,j+1 is linked to Sv
i,ℓ.

R3. If τvi,j is linked to Sv
i,ℓ, then τvi,j executes whenever Sv

i,ℓ is scheduled until τvi,j completes.

Here, Rule R2 prohibits any out-of-order linking that can happen if a job τvi,j+1 is released before its prior job

τvi,j . Since job releases are determined by precedence constraints, such a scenario can happen for DAG tasks.

104

For example, considering the DAG in Figure 4.1, if the server jobs of τv1,j and τv1,j+1 are scheduled at the

same time and the actual execution time of τv1,j is smaller, then τv2,j+1 is released earlier than τv2,j . Rule R2

ensures that τv2,j is linked before τv2,j+1 even if it is released later. Without such enforcement, τv2,j+1 may

execute at a higher priority than τv2,j due to their out-of-order linking.

Example 4.2 (Continued). Figure 4.2 depicts a schedule of G1. At time 0, the first job of each server is

released. Since τ11,1 is released at time 0, by Rule R2, it is linked to S1
1,1. By Rule R3, τ11,1 executes when

S1
1,1 is scheduled during [0, 2). At time 2, τ12,1 and τ13,1 are released. At time 5, when S1

2,1 (resp., S1
3,1) is

released, τ12,1 (resp., S1
3,1) is linked to it. ◀

As seen in Figure 4.2(b), an unlinked server job has unused budget. In Section 4.4, we give slack-

reallocation rules to utilize such unused budgets without violating response-time bounds.

4.3 Basic Response-Time Bound

In this section, we give non-exact response-time bounds for DAG tasks under the server-based scheduling

given in Section 4.2. These bounds establish the SRT-optimality of server-based scheduling. Moreover, recall

that, in Chapter 3, we have used an upper bound on LAG to determine the simulation length needed for

computing exact response-time bounds. Similarly, we will use the bounds derived in this section to derive a

bound on the simulation length in Section 4.4.

Server response-time bounds. As server tasks are periodic and have restricted parallelism, previously

derived response-time bounds apply to them [Amert et al., 2019].

Definition 4.2. Let Ub =
∑

b largest values of τvi with P v
i <M uvi and Cb =

∑
b largest values of τvi with P v

i <M uvi . ◀

From [Amert et al., 2019], Sv
i has a response-time bound R(Sv

i), where

R(Sv
i) = T v +

(M − 1)Cmax + 2CM−1

m− UM−1
+ Cv

i . (4.2)

Response-time bounds of DAG tasks. Using the response-time bounds of servers given in (4.2), we now

derive response-time bounds of DAG tasks under server-based scheduling.

Lemma 4.1. If Sv
i,j and Sv

i,k are ready at time t where j < k and Sv
i,k is scheduled at time t, then Sv

i,j is also

scheduled at time t.

105

Proof. Since j < k and Sv
i releases periodically, r(Sv

i,j) < r(Sv
i,k) holds. Thus, y(τvi,j) < y(τvi,k) holds.

Having higher priority and being ready, Sv
i,j is thus scheduled if Sv

i,k is.

Due to Lemma 4.1, an earlier server job of a server completes at or before the later server jobs of the

server.

Lemma 4.2. For any j and k with j ≤ k, f(Sv
i,j) ≤ f(Sv

i,k).

Proof. Assume for a contradiction that the lemma does not hold, in which case j < k clearly holds. Let t be

the first time instant such that there are server jobs Sv
i,j and Sv

i,k such that j < k, t < f(Sv
i,j), and t = f(Sv

i,k).

Since, by the budget Consumption Rule, Sv
i,j and Sv

i,k are scheduled for Cv
i time units before their completion

and f(Sv
i,j) > f(Sv

i,k), there is a time instant t′ ≤ t such that Sv
i,j is not scheduled at t′, but Sv

i,k is scheduled

at t′.

We now prove that Sv
i,j is ready at time t′, which by Lemma 4.1 implies that it is scheduled at time t′,

a contradiction. Since Sv
i,k is scheduled at t′ and j < k, r(Sv

i,j) < r(Sv
i,k) ≤ t′ holds. By the definition

of t and t′, t′ < f(Sv
i,j). If j < P v

i , then Sv
i,j is ready at time t′ as claimed, so assume j ≥ P v

i . Since

Sv
i,k is scheduled (hence ready) at time t′, Sv

i,k−P v
i

completes by time t′. As j < k, by the definition of t,

f(Sv
i,j−P v

i
) ≤ f(Sv

i,k−P v
i
). Thus, Sv

i,j−P v
i

completes by time t′ and Sv
i,j is ready then.

Lemma 4.3. If a job τvi,j is ready when its linked server job Sv
i,k is first scheduled, then f(τvi,j) ≤ f(Sv

i,k).

Proof. By the budget Consumption Rule, Sv
i,k is scheduled for Cv

i time units. Since τvi,j is ready when Sv
i,k

is first scheduled, by Rule R3, τvi,j completes execution at or before Sv
i,k’s budget is exhausted. Therefore,

f(τvi,j) ≤ f(Sv
i,k) holds.

From Rule R2, we have the following three lemmas that relate a job’s index with its linked server job’s

index.

Lemma 4.4. If τvi,j is linked to a server job Sv
i,k, then j ≤ k.

Proof. Follows from Rule R2.

Lemma 4.5. If τvi,j and τvi,j+1 are linked to Sv
i,k and Sv

i,ℓ, respectively, then ℓ > k holds.

Proof. By Rule R2, τvi,j+1 is linked to Sv
i,ℓ if τvi,j is the last job of τvi that is linked to a server job when Sv

i,ℓ is

released. Therefore, Sv
i,k is released before Sv

i,ℓ. Thus, ℓ > k holds.

106

Lemma 4.6. If τvi,j and τvi,j+c are linked to Sv
i,k and Sv

i,ℓ, respectively, then ℓ− k ≥ c holds.

Proof. Follows from Lemma 4.5.

We now define a response-time bound R(τvi) for each τvi . R(τvi) is recursively computed according to

τvi ’s predecessors’ response-time bounds. Let

R(τvi) = Ov
i +R(Sv

i) + T v, (4.3)

where Ov
i =


0 i = 1

max
τvj ∈pred(τvi)

{R(τvj)} otherwise.
(4.4)

In Theorem 4.1, we show that R(τvi) is a response-time bound of τvi using Lemmas 4.7–4.10 given

below.

Lemma 4.7. For any job τvi,j , τ
v
i,j is ready at or before its linked server job Sv

i,k starts execution.

Proof. Assume otherwise. Let t be the first time instant such that there is a job τvi,j that is not ready, but its

linked server job Sv
i,k starts execution at time t. By Rule R2, r(τvi,j) ≤ t. Since τvi,j is not ready at time t,

j > P v
i holds and τvi,j−P v

i
does not complete execution at or before time t. By Lemma 4.4, k ≥ j > P v

i

holds.

We now prove that τvi,j−P v
i

completes by time t, i.e., f(τvi,j−P v
i
) ≤ t, thereby reaching a contradiction. By

Lemma 4.6, τvi,j−P v
i

is linked to Sv
i,ℓ with ℓ ≤ k − P v

i . Let t′ be the first time instant when Sv
i,ℓ is scheduled.

Since Sv
i,k is scheduled at time t, f(Sv

i,k−P v
i
) ≤ t. Thus, by Lemma 4.2, f(Sv

i,ℓ) ≤ t. Since Cv
i > 0, we have

t′ < f(Sv
i,ℓ) ≤ t. Hence, by the definition of t, τvi,j−P v

i
is ready when Sv

i,ℓ is first scheduled. By Lemma 4.3,

f(τvi,j−P v
i
) ≤ f(Sv

i,ℓ) ≤ t. Thus, τvi,j is ready at time t.

By Lemmas 4.7 and 4.3, we have the following lemma.

Lemma 4.8. For any job τvi,j , τ
v
i,j completes execution at or before its linked server job Sv

i,k completes.

Proof. Follows from Lemmas 4.7 and 4.3.

Using (4.3) and (4.4), we have the following lemma.

107

Lemma 4.9. For any non-source task τvi , Ov
i ≥ Ov

k +R(Sv
k) + T v holds, where τvk ∈ pred(τvi).

Proof. By (4.3) and (4.4), we have Ov
i ≥ R(τvk) = Ov

k +R(Sv
k) + T v.

Lemma 4.10. For any job τvi,j , τ
v
i,j is linked to a server job at or before time r(τv1,j) +Ov

i + T v.

Proof. Assume for a contradiction that t is the first time instant such that a job τvi,j is not linked to any server

job and t = r(τv1,j) +Ov
i + T v holds. Let Sv

i,k be the latest server job of Sv
i released at or before time t. We

will show that τvi,j is linked to Sv
i,k, thereby reaching a contradiction. Since Sv

i releases jobs periodically,

r(Sv
i,k) ≥ t − T v = r(τv1,j) + Ov

i . By Rule R2, it suffices to prove that r(τvi,j) ≤ r(τv1,j) + Ov
i holds and

τvi,j−1 (if j > 1) is linked to a server job by time r(τv1,j) +Ov
i .

Claim 4.1. τvi,j is released at or before r(τv1,j) +Ov
i .

Proof. Assume otherwise. Since τv1,j is released at time r(τv1,j) and by (4.4), Ov
1 = 0, we have i ̸= 1. Thus,

τvi is a non-source task. Since τvi releases τvi,j once the jth job of each of its predecessors completes, there

is a job τvp,j such that τvp ∈ pred(τvi) and f(τvp,j) > r(τv1,j) +Ov
i hold. By Lemma 4.9, we have Ov

p < Ov
i .

Thus, r(τv1,j) + Ov
p + T v < r(τv1,j) + Ov

i + T v = t. Therefore, by the definition of t, τvp,j is linked to

a server job at or before time r(τv1,j) + Ov
p + T v. Assume that τvp,j is linked to Sv

p,ℓ. Then, by Rule R2,

r(Sv
p,ℓ) ≤ r(τv1,j) +Ov

p + T v. Since the response time of Sv
p,ℓ is at most R(Sv

p), we have

f(Sv
p,ℓ) ≤ r(Sv

p,ℓ) +R(Sv
p)

≤ {Since r(Sv
p,ℓ) ≤ r(τv1,j) +Ov

p + T v}

r(τv1,j) +Ov
p + T v +R(Sv

p)

≤ {By Lemma 4.9 and since τvp ∈ pred(τvi)}

r(τv1,j) +Ov
i . (4.5)

By Lemma 4.8 and (4.5), we have f(τvp,j) ≤ f(Sv
p,ℓ) ≤ r(τv1,j) +Ov

i , a contradiction.

Claim 4.2. If j > 1, then τvi,j−1 is linked to a server job at or before time r(τv1,j) +Ov
i .

Proof. Since source task τv1 releases jobs periodically, we have r(τv1,j) = r(τv1,j−1)+T
v. Thus, r(τv1,j−1)+

Ov
i + T v = r(τv1,j) +Ov

i < r(τv1,j) +Ov
i + T v holds. Therefore, by the definition of t, τvi,j−1 is linked to

a server job at or before time r(τv1,j−1) +Ov
i + T v = r(τv1,j) +Ov

i .

108

These two claims yield a contradiction, as noted above.

By (4.3) and Lemmas 4.10 and 4.8, we have the following theorem.

Theorem 4.1. The response time of any job τvi,j is at most R(τvi).

Proof. By Lemma 4.10, τvi,j is linked to a server job Sv
i,k released by time r(τv1,j) +Ov

i + T v. Since Sv
i,k’s

response time is at most R(Sv
i), S

v
i,k finishes execution by time r(τv1,j) +Ov

i + T v +R(Sv
i). By Lemma 4.8,

τvi,j finishes execution by time r(τv1,j) + Ov
i + T v + R(Sv

i). Thus, the response time of τvi,j is at most

Ov
i + T v +R(Sv

i). By (4.3), R(τvi) = Ov
i + T v +R(Sv

i) holds.

4.4 Exact Response-Time Bound

In this section, we give a simulation-based method to compute exact response-time bounds of DAG

tasks under the server-based scheduling policy given in Section 4.2. We leverage the lag-monotonicity

(Lemma 3.13) and LAG-monotonicity (Corollary 3.1) properties used in Chapter 3 for deriving exact bounds

for sequential tasks. However, the presence of concurrent ready jobs of the same task complicates establishing

and using such properties. We initially assume the following, which we relax later.

Assumption 4.1. Each job of any task τvi executes for its WCET Cv
i .

Note that the response-time bounds (and associated lemmas and theorems) given in Section 4.3 do not

rely on Assumption 4.1. We begin by defining lag and LAG for DAG tasks and servers.

4.4.1 Definitions and Notation

We denote a GEL schedule of Γs as S . We denote a schedule of Γ on the server schedule S as G. Similar

to the response-time bound proof of Chapter 3, we will use the concept of lag and LAG. Similar to Chapter 3,

we first define a “hypothetical” ideal schedule for servers and DAG tasks.

Ideal schedule. Let {π̂11, π̂12, . . . , π̂NnN } be
∑N

v=1 n
v processors, where π̂vi has speed of uvi . In an ideal

schedule I, each task τvi and corresponding server Sv
i is partitioned to be scheduled on processor π̂vi . Each

server’s budget is replenished according to the budget Replenishment Rule given in Section 4.3. However, its

budget is consumed via the following rule.

Ideal Consumption Rule. Sv
i,j consumes budget at the rate of uvi execution unit per unit of time

when it is scheduled until its budget is exhausted.

109

Time
τ11 (rate: 2/5)

τ12 (rate: 3/5)

0 5 10 15

Release Deadline Completion Task execution

Figure 4.3: An ideal schedule of τv1 and τv2 of G1 in Figure 4.1. Server jobs are not shown as they have the
same schedule.

Each server job Sv
i,j is scheduled at time r(Sv

i,j) = r(τv1,j) and remains scheduled until its budget is exhausted.

Therefore, Sv
i,j completes at time r(Sv

i,j) + Cv
i /u

v
i = r(Sv

i,j) + T v.

Each job τvi,j executes at a rate of uvi whenever Sv
i,j is scheduled. Thus, τvi,j begins execution at time r(τv1,j)

and completes execution at time r(τv1,j) + T v. Therefore, all jobs corresponding to a DAG job Gv
j start

execution upon Gv
j ’s release and complete execution at time r(τv1,j) + T v when Gv

j+1 is released. Note that

precedence constraints among tasks are not maintained in I.

Example 4.2 (Continued). Figure 4.3 depicts an ideal schedule I corresponding to the tasks τ11 and τ12 of

DAG task G1 in Figure 4.2. Although job τ11,1 is not complete at time 0, τ12,1 starts execution at time 0 at the

rate of 3/5 execution units per unit of time. ◀

We now define the term allocation. To avoid repetition, we use the notation Jv
i,j to denote τvi,j or Sv

i,j .

Similarly, we use Jv
i (resp., Ψ) to denote τvi or Sv

i (resp., Γ or Γs). Finally, we useH to denote a schedule

that can be either G or S or I.

Allocation. The cumulative processor capacity (as defined by Definition 3.1) allocated to job Jv
i,j , task

Jv
i , and system Ψ in a scheduleH over an interval [t, t′) is denoted by A(Jv

i,j , t, t
′,H), A(Jv

i , t, t
′,H), and

A(Ψ, t, t′,H), respectively. The allocation of a task (resp., system) over interval [t, t′) is the sum of all of its

jobs’ (resp., tasks’) allocation over interval [t, t′). Therefore, we have the following equations.

A(Jv
i , t, t

′,H) =
∑
j

A(Jv
i,j , t, t

′,H) (4.6)

A(Ψ, t, t′,H) =
∑
v,i

A(Jv
i , t, t

′,H) (4.7)

110

Since the processor capacity allocated to a job or server job over an interval is non-negative, for any

intervals [t, t′) and [t, t′′) with t′′ ≥ t′ ≥ t, we have the following properties.

A(Jv
i,j , t, t

′,H) ≤ A(Jv
i,j , t, t

′′,H) (4.8)

A(Jv
i,j , t, t

′,H) = A(Jv
i,j , 0, t

′,H)− A(Jv
i,j , 0, t,H) (4.9)

In I, server job Sv
i,j and job τvi,j are scheduled when Gv

j is released, i.e., at time r(τv1,j). S
v
i,j (resp., τvi,j)

consumes budget (resp., executes) at a rate of uvi until its completion. Therefore, for any interval [r(τv1,j), t),

we have

A(Jv
i,j , r(τ

v
1,j), t, I) = min{uvi (t− r(τv1,j)), Cv

i }. (4.10)

Similarly, for interval [t, t′) with t ≥ Φv (resp., t ≥ Φmax).

A(Jv
i , t, t

′, I) = uvi (t
′ − t) (4.11)

A(Ψ, t, t′, I) = Utot(t
′ − t) (4.12)

lag and LAG. The lag of job Jv
i,j in scheduleH is defined as

lag(Jv
i,j , t,H) = A(Jv

i,j , 0, t, I)− A(Jv
i,j , 0, t,H). (4.13)

The lag (resp., LAG) of task Jv
i (resp., system Ψ) at time t inH is given by

lag(Jv
i , t,H) =

∑
j

lag(Jv
i,j , t,H)

= A(Jv
i , 0, t, I)− A(Jv

i , 0, t,H) (4.14)

LAG(Ψ, t,H) =
∑
v,i

lag(Jv
i , t,H)

111

= A(Ψ, 0, t, I)− A(Ψ, 0, t,H) (4.15)

Since lag(Jv
i , 0,H) = 0 and LAG(Ψ, 0,H) = 0, for t′ ≥ t we have the following equations.

lag(Jv
i , t

′,H) = lag(Jv
i , t,H) + A(Jv

i , t, t
′, I)

− A(Jv
i , t, t

′,H) (4.16)

LAG(Ψ, t′,H) = LAG(Ψ, t,H) + A(Ψ, t, t′, I)− A(Ψ, t, t′,H) (4.17)

Definition 4.3. Let hv = H/T v. ◀

Proof overview. Similar to the method we gave to compute exact response-time bounds of sequential tasks

in Chapter 3, we aim to derive an upper bound on the length of the prefix of a schedule of DAG tasks after

which the response times of DAG tasks do not increase (Theorem 4.2). We do so by showing that if the LAG

of Γ remains the same at hyperperiod boundaries for a sufficiently long interval of time, then it continues to

remain the same at hyperperiod boundaries at any time in the future (Lemma 4.50). Furthermore, when this

happens, response times do not increase afterwards (Lemma 4.51). Our proof is based on the following four

key steps, among which the first two pertains to the server schedule and the remaining to the DAG schedule.

Step 1. The amount of time a server job Sv
i,j+hv is scheduled by time t+H is at most the amount of

time Sv
i,j is scheduled by time t (Lemma 4.19). The amount of time Sv

i (resp., Γs) is scheduled

over an an interval [t, t+H) is at most Huvi (resp., HUtot) (Lemmas 4.25 and 4.26). This step

essentially establishes the lag-monotonicity and LAG-monotonicity properties for servers.

Step 2. If the time allocated to Γs over an interval [t, t+H) equals HUtot, then scheduling decisions

and the state of Γs are identical at times t and t+H (Lemma 4.33).

Step 3. If the time allocated to Γ over H-sized intervals remains HUtot for sufficiently long, then Γ

continues to be scheduled for HUtot time units in any future H-sized interval (Lemma 4.50) and

each DAG task’s maximum response time has stabilized (Lemma 4.51).

Step 4. There is a time instant when the condition mentioned in Step 3 holds (Lemma 4.54).

We cover Steps 1 and 2 in Section 4.4.2 and Steps 3 and 4 in Section 4.4.3.

112

4.4.2 Analysis of Servers

We begin by addressing Steps 1 and 2. As mentioned earlier, Step 1 establishes the monotonicity

properties of lag and LAG. However, as multiple jobs per task can be ready concurrently, we need job-level

reasoning, in contrast to the task-level reasoning we used in Chapter 3 where at most one job per task can be

ready concurrently.

To complete Step 1, we will first show, in Lemma 4.19, that the amount of time allocated to a server job

Sv
i,j+hv by time t+H is at most the amount of time allocated to Sv

i,j by time t. Note that server jobs Sv
i,j and

Sv
i,j+hv are separated by a hyperperiod. We will prove the existence of higher-priority ready jobs that cause

Sv
i,j+hv to maintain this property under GEL scheduling. We begin by proving Lemmas 4.11–4.17, which

establish the existence of such ready higher-priority jobs. The lemma below holds as servers release jobs

periodically.

Lemma 4.11. For any integer c, r(Sv
i,j+chv) = r(Sv

i,j) + cH and y(Sv
i,j+chv) = y(Sv

i,j) + cH hold.

The following two lemmas show that the pending jobs of a task are consecutive at any time instant.

Informally, this is because, by Lemma 4.2, a server job cannot finish before a prior server job of the same

server finishes.

Lemma 4.12. If Sv
i,j and Sv

i,ℓ with j ≤ ℓ are pending at time t, then each server job Sv
i,k with j ≤ k ≤ ℓ is

pending at time t.

Proof. By Definition 4.1, we have r(Sv
i,ℓ) ≤ t. Since k ≤ ℓ, we have r(Sv

i,k) ≤ r(Sv
i,ℓ) ≤ t. By Definition 4.1,

we have f(Sv
i,j) > t. Since k ≥ j, by Lemma 4.2, we have f(Sv

i,k) ≥ f(Sv
i,j) > t. Thus, by Definition 4.1,

Sv
i,k is pending at time t.

By Lemma 4.12, we have the following lemma.

Lemma 4.13. If at least p server jobs of Sv
i are pending at time t and Sv

i,j is the highest-priority server job

of Sv
i that is pending at time t, then Sv

i,j+1, S
v
i,j+2, . . . , S

v
i,j+p−1 are pending at time t.

Proof. Assume that Sv
i,j+k such that 1 ≤ k ≤ p− 1 is not pending at time t. Since Sv

i,j is the highest-priority

pending server job of Sv
i at time t, no server job of Sv

i prior to Sv
i,j is pending at time t. Since Sv

i has at

least p pending server jobs at time t, there must be a pending server job Sv
i,j+ℓ at time t such that ℓ > p− 1

holds. By Lemma 4.12, each server job Sv
i,j+k with 1 ≤ k ≤ ℓ is pending at time t, a contradiction.

113

Using the above lemmas about pending server jobs, we now give the following lemmas about ready

server jobs. We will use them to show the existence of higher-priority ready jobs at certain time instances,

which subsequently will be needed to prove Lemma 4.19.

Lemma 4.14. If at least p server jobs of Sv
i are ready at time t and Sv

i,j is the highest-priority server job of

Sv
i that is pending at time t, then Sv

i,j , S
v
i,j+1, . . . , S

v
i,j+p−1 are ready at time t.

Proof. Since P v
i ≥ 1 and no server job of Sv

i with higher priority than Sv
i,j is pending, Sv

i,j is ready at time t.

By Lemma 4.13, server jobs Sv
i,j+1, S

v
i,j+2, . . . , S

v
i,j+p−1 are pending at time t. Assume that Sv

i,j+k such that

1 ≤ k ≤ p− 1 is not ready at time t. Then, j + k > P v
i , and Sv

i,j+k−P v
i

does not finish execution by time t,

i.e., f(Sv
i,j+k−P v

i
) > t. As there are at least p ready jobs at time t, there is a ready job Sv

i,j+ℓ at time t such

that ℓ > k (thus, j + ℓ > P v
i). By Lemma 4.2, f(Sv

i,j+ℓ−P v
i
) ≥ f(Sv

i,j+k−P v
i
) > t. Thus, Sv

i,j+ℓ is not ready

at time t, a contradiction.

Lemma 4.15. If at least p server jobs of Sv
i are pending at time t, then at least min{p, P v

i } server jobs are

ready at time t.

Proof. If p = 0, then the lemma holds trivially, so assume p ≥ 1. Let Sv
i,j be the highest-priority server

job of Sv
i that is pending at time t. By Lemma 4.13, Sv

i,j+1, S
v
i,j+2, . . . , S

v
i,j+p−1 are pending at time t. Let

ℓ = min{p, P v
i }. Then, ℓ ≤ P v

i holds. For any 0 ≤ k ≤ ℓ−1, j+k−P v
i ≤ j+k− ℓ < j holds. Therefore,

for any 0 ≤ k ≤ ℓ − 1 and j + k − P v
i > 0, Sv

i,j+k−P v
i

is complete at time t. By Definition 4.1, for each

0 ≤ k ≤ ℓ− 1, Sv
i,j+k is ready at time t and the lemma holds.

Lemma 4.16. For any integer c and job index j such that j + chv ≥ 1, if Sv
i,j is pending at time t and

A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+chv , 0, t+ cH,S) holds, then Sv
i,j+chv is pending at time t+ cH .

Proof. By Definition 4.1, r(τvi,j) ≤ t. By Lemma 4.11, r(Sv
i,j+chv) = r(Sv

i,j) + cH ≤ t + cH . Thus,

Sv
i,j+chv is released at or before time t + cH . Since Sv

i,j is ready at time t, by Definition 4.1, f(Sv
i,j) > t.

Thus, A(Sv
i,j , 0, t,S) < Cv

i . Hence, A(Sv
i,j+chv , 0, t+ cH,S) ≤ A(Sv

i,j , 0, t,S) < Cv
i . Thus, Sv

i,j completes

execution after time t+ cH . Therefore, by Definition 4.1, it is pending at time t+ cH .

Definition 4.4. Let hp(Sw
k,ℓ, S

v
i , t) denote the number of ready jobs of Sv

i at time t that have higher priorities

than Sw
k,ℓ. ◀

114

Using Lemmas 4.11–4.16, the following lemma shows that the number of ready jobs at time t+H with

higher priorities than Sw
k,ℓ+hw is no smaller than the number of ready jobs at time t with higher priorities than

Sw
k,ℓ, when A(Sv

i,j , 0, t,S) ≥ A(Sv
i,j+hv , 0, t+H,S) holds for each server job. Informally, this is because,

for any ready server job at time t, there exists a unique ready server job at time t+H .

Lemma 4.17. Assume that, for each server job Sv
i,j of a server Sv

i , A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+hv , 0, t+H,S)

holds at time t ≥ Φv. Then, for any server job Sw
k,ℓ, hp(S

w
k,ℓ, S

v
i , t) ≤ hp(Sw

k,ℓ+hw , Sv
i , t+H) holds.

Proof. Let p = hp(Sw
k,ℓ, S

v
i , t). If p = 0, then the lemma trivially holds, so assume p ≥ 1. By Definitions 4.1

and 4.4, p ≤ P v
i . Let Sv

i,j be the highest-priority server job of Sv
i that is pending at time t. By Lemma 4.14,

Sv
i,j , S

v
i,j+1, . . . , S

v
i,j+p−1 are ready at time t. Therefore, by Lemma 4.16 (replacing c by 1), server jobs

Sv
i,j+hv , Sv

i,j+1+hv , . . . , Sv
i,j+p−1+hv are pending at time t+H . Let Sv

i,x be the highest-priority server job of

Sv
i that is pending at time t+H . Then, x ≤ j + hv holds. By Lemma 4.12, each server job Sv

i,z such that

x ≤ z ≤ j+p−1+hv is pending at time t+H . Therefore, there are at least j+p−1+hv−x+1 = j+p+hv−x

pending server jobs of Sv
i at time t +H . By Lemma 4.15, at least min{j + p + hv − x, P v

i } server jobs

of Sv
i are ready at time t +H . Since x ≤ j + hv, we have j + p + hv − x ≥ p. Since by Definitions 4.1

and 4.4, p ≤ P v
i holds, we have p ≤ min{j + p+ hv − x, P v

i }. Thus, there are at least p ready jobs of Sv
i at

time t+H . By Lemma 4.14, Sv
i,x, S

v
i,x+1, . . . , S

v
i,x+p−1 are ready at time t.

We now prove that each server job Sv
i,x+b with 0 ≤ b ≤ p− 1 has higher priority than Sw

k,ℓ+hw . Since

x ≤ j + hv, we have x+ p− 1 ≤ j + p− 1+ hv. Thus, each Sv
i,x+b with 0 ≤ b ≤ p− 1 has higher or equal

priority than Sv
i,j+p−1+hv . So, it suffices to prove that Sv

i,j+p−1+hv has higher priority than Sw
k,ℓ+hw . As Sv

i,j

is the highest-priority ready job of Sv
i at t, by Definition 4.4, each of Sv

i,j , S
v
i,j+1, . . . , S

v
i,j+p−1 has higher

priority than Sw
k,ℓ. Thus, y(Sv

i,j+p−1) ≤ y(Sw
k,ℓ) holds, and by Lemma 4.11,

y(Sw
k,ℓ+hw) = y(Sw

k,ℓ) +H

≥ {Since y(Sv
i,j+p−1) ≤ y(Sw

k,ℓ)}

y(Sv
i,j+p−1) +H

= {By Lemma 4.11}

y(Sv
i,j+p−1+hv). (4.18)

115

Since ties are broken consistently, Sv
i,j+p−1+hv has higher priority than Sw

k,ℓ+hw if Sv
i,j+p−1 has higher priority

than Sw
k,ℓ. Thus, there are at least p ready jobs of Sv

i at time t+H that have higher priorities than Sw
k,ℓ+hw .

The following lemma gives necessary conditions for A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+hv , 0, t +H,S) to not

hold for the first time in S . The lemma and its proof is similar to Lemma 3.12 proved in Chapter 3. Informally,

Lemma 4.18(a) holds as, by Definition 4.3 and Lemma 4.11, Sv
i,j+hv is released after time Φv +H . By the

definition of time t, A(Sv
i,j , 0, t − 1,S) ≥ A(Sv

i,j+hv , 0, t +H − 1,S) holds. Thus, Lemma 4.18(b) must

hold to satisfy the lemma assumptions.

Lemma 4.18. Let t ≥ Φv be the first time instant (if any) such that for a job Sv
i,j , A(S

v
i,j , 0, t,S) <

A(Sv
i,j+hv , 0, t+H,S) holds. Then, the following hold.

(a) t > Φv.

(b) Sv
i,j is not scheduled during [t− 1, t), but Sv

i,j+hv is scheduled during [t+H − 1, t+H).

Proof. (a) Assume that t = Φv holds. Since r(Sv
i,1) = Φv, by Lemma 4.11, Sv

i,hv+1 is released at time t+H .

Since no server job is scheduled before its release, for any k ≥ 1, A(Sv
i,k+hv , 0, t+H,S) = 0 holds. Thus,

for any k ≥ 1, A(Sv
i,k, 0, t,S) ≥ A(Sv

i,k+hv , 0, t+H,S), a contradiction.

(b) By Lemma 4.18(a), t > Φv holds. By the definition of t,

A(Sv
i,j , 0, t− 1,S) ≥ A(Sv

i,j+hv , 0, t+H − 1,S). (4.19)

Assume that Sv
i,j is scheduled during [t− 1, t) or Sv

i,j+hv is not scheduled during [t+H − 1, t+H). Then,

one of the following three cases holds.

Case 1. Sv
i,j and Sv

i,j+hv are scheduled during [t− 1, t) and [t+H − 1, t+H), respectively. Therefore,

A(Sv
i,j , 0, t,S) = A(Sv

i,j , 0, t−1,S)+1 and A(Sv
i,j+hv , 0, t+H,S) = A(Sv

i,j+hv , 0, t+H−1,S)+1 hold.

By (4.19), A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+hv , 0, t+H,S) holds

Case 2. Sv
i,j and Sv

i,j+hv are not scheduled during [t − 1, t) and [t + H − 1, t + H), respectively.

Therefore, A(Sv
i,j , 0, t,S) = A(Sv

i,j , 0, t− 1,S) and A(Sv
i,j+hv , 0, t+H,S) = A(Sv

i,j+hv , 0, t+H − 1,S)

hold. By (4.19), A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+hv , 0, t+H,S) holds.

Case 3. Sv
i,j is scheduled during [t − 1, t) and Sv

i,j+hv is not scheduled during [t + H − 1, t + H).

Therefore, A(Sv
i,j , 0, t,S) = A(Sv

i,j , 0, t−1,S)+1 and A(Sv
i,j+hv , 0, t+H,S) = A(Sv

i,j+hv , 0, t+H−1,S)

hold. By (4.19), A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+hv , 0, t+H,S) holds.

116

In each case, we have a contradiction.

Using Lemmas 4.17 and 4.18, we now prove the following lemma. This lemma is a “job-level” analogue

of the lag-monotonicity property (Lemma 3.13) shown in Chapter 3. Note that we disallowed the concurrent

execution of jobs of the same task in Chapter 3. However, with arbitrary parallelism levels, we need to

consider multiple ready jobs per task in the proof of the following lemma (hence, we need Lemma 4.17).

Lemma 4.19. For any server job Sv
i,j and time instant t ≥ Φv, A(Sv

i,j , 0, t,S) ≥ A(Sv
i,j+hv , 0, t + H,S)

holds.

Proof. Assume otherwise. Let t be the first time instant such that t ≥ Φv and there is a job Sv
i,j satisfying the

following.

A(Sv
i,j , 0, t,S) < A(Sv

i,j+hv , 0, t+H,S) (4.20)

By Lemma 4.18(a), t > Φv holds. Thus, by the definition of time t,

∀w, k, ℓ : t− 1 ≥ Φw :: A(Sw
k,ℓ, 0, t− 1,S) ≥ A(Sw

k,ℓ+hw , 0, t+H − 1,S). (4.21)

Since Sv
i,j+hv is scheduled for Cv

i time units in total, we have

A(Sv
i,j+hv , 0, t+H,S) ≤ Cv

i . (4.22)

By Lemma 4.18(b), Sv
i,j+hv is scheduled during [t+H − 1, t+H), so r(Sv

i,j+hv) ≤ t+H − 1 holds, and

by Lemma 4.11,

r(Sv
i,j) = r(Sv

i,j+hv)−H ≤ t− 1. (4.23)

We now prove two claims.

Claim 4.3. Sv
i,j is pending at time t− 1.

Proof. By (4.23), Sv
i,j is released at or before time t− 1. Thus, it suffices to prove that f(Sv

i,j) > t− 1.

Assume to the contrary that f(Sv
i,j) ≤ t − 1. Thus, A(Sv

i,j , 0, t − 1,S) = Cv
i . By (4.8), we have

A(Sv
i,j , 0, t,S) ≥ Cv

i . By (4.20), A(Sv
i,j+hv , 0, t+H,S) > A(Sv

i,j , 0, t,S) ≥ Cv
i , contradicting (4.22).

Claim 4.4. Sv
i,j is ready at time t− 1.

117

Proof. By Claim 4.3, Sv
i,j is pending at time t−1. If j ≤ P v

i , then Sv
i,j is also ready at time t−1, so assume

j > P v
i . Since Sv

i,j+hv is scheduled (hence, ready) at time t+H−1, Sv
i,j+hv−P v

i
completes by time t+H−1.

Hence, A(Sv
i,j+hv−P v

i
, 0, t +H − 1,S) = Cv

i . By (4.21), we have A(Sv
i,j−P v

i
, 0, t − 1,S) ≥ Cv

i . Thus,

Sv
i,j−P v

i
completes by time t− 1 and Sv

i,j is ready at time t− 1.

By Claim 4.4 and Lemma 4.18(b), Sv
i,j is ready but not scheduled at time t − 1. Therefore, at time t − 1,

there are at least M ready server jobs that have higher priorities than Sv
i,j . By (4.21) and Lemma 4.17, each

server Sw
k with p ready server jobs of higher priority than Sv

i,j at time t− 1 has at least p ready server jobs of

higher priority than Sv
i,j+hv at time t+H − 1. Thus, there are at least M ready server jobs of higher priority

than Sv
i,j+hv at time t+H − 1. Therefore, Sv

i,j+hv cannot be scheduled at time t+H − 1, which contradicts

Lemma 4.18(b).

The following lemma generalizes Lemma 4.19 for the case of multiple hyperperiods.

Lemma 4.20. For any server job Sv
i,j , positive integer c, and time instant t ≥ Φv, A(Sv

i,j , 0, t,S) ≥

A(Sv
i,j+chv , 0, t+ cH,S).

Proof. By Lemma 4.19, for any k ≥ 0, we have A(Sv
i,j , 0, t + kH,S) ≥ A(Sv

i,j+hv , 0, t + (k + 1)H,S).

Therefore, A(Sv
i,j , 0, t,S) ≥ A(Sv

i,j+chv , 0, t+ cH,S).

We now give Lemmas 4.21–4.26, which complete Step 1. Since server job Sv
i,j consumes budget at the

rate of uvi in I during [r(Sv
i,j), r(S

v
i,j) + T v), we have the following lemma.

Lemma 4.21. For any job Sv
i,j , positive integer c, and time instant t ≥ Φv, A(Sv

i,j , 0, t, I) = A(Sv
i,j+chv , 0, t+

cH, I).

Proof. We consider two cases.

Case 1. t < r(Sv
i,j). By Lemma 4.11, t + cH < r(Sv

i,j+chv). In I, Sv
i,j and Sv

i,j+chv do not consume

budget before r(Sv
i,j) and r(Sv

i,j+chv), respectively. Thus, A(Sv
i,j , 0, t, I) = A(Sv

i,j+chv , 0, t + cH, I) = 0

holds.

Case 2. t ≥ r(Sv
i,j). Since Sv

i,j is released at time r(Sv
i,j),

A(Sv
i,j , 0, t, I) = A(Sv

i,j , r(S
v
i,j), t, I)

= {By (4.10)}

118

min{uvi (t− r(Sv
i,j)), C

v
i }. (4.24)

Similarly, for Sv
i,j+hv , we have

A(Sv
i,j+hv , 0, t+cH, I) = min{uvi (t+cH−r(Sv

i,j+chv)), Cv
i }

= {By Lemma 4.11}

min{uvi (t− r(Sv
i,j)), C

v
i }

= {By (4.24)}

A(Sv
i,j , 0, t, I).

Thus, the lemma holds.

Lemma 4.22. For any server job Sv
i,j , positive integer c, and time instant t ≥ Φv, lag(Sv

i,j , t,S) ≤

lag(Sv
i,j+chv , t+ cH,S).

Proof. By Lemmas 4.20 and 4.21, A(Sv
i,j , 0, t, I)−A(Sv

i,j , 0, t,S) ≤ A(Sv
i,j+chv , 0, t+cH, I)−A(Sv

i,j+chv ,

0, t+ cH,S). Thus, by (4.13), the lemma holds.

In I, each server job completes execution when the next server job is released. Thus, a server job’s lag

cannot be negative at or after its next server job is released. This is shown in the following lemma.

Lemma 4.23. For any server job Sv
i,j and time instant t ≥ r(Sv

i,j) + T v, lag(Sv
i,j , t,S) ≥ 0 holds.

Proof. Since Sv
i,j is scheduled after its release in I, we have

A(Sv
i,j , 0, t, I) = A(Sv

i,j , r(S
v
i,j), t, I)

= {By (4.10)}

min{uvi (t− r(Sv
i,j)), C

v
i }

= {Since t ≥ r(Sv
i,j) + T v and uvi T

v = Cv
i }

Cv
i .

Since Sv
i,j does not consume budget more than Cv

i in S, we have A(Sv
i j, 0, t,S) ≤ Cv

i . Thus, we have

lag(Sv
i,j , t,S) = A(Sv

i,j , 0, t, I)− A(Sv
i,j , 0, t,S) ≥ Cv

i − Cv
i ≥ 0.

119

Since each server job Sv
i,j completes at time r(Sv

i,j) + T v = r(Sv
i,j+1) in I, and Sv

i,hv+1 is released at

time Φv +H , each server job Sv
i,j with j ≤ hv is complete by time Φv +H in I. Using this fact, we have

the following lemma.

Lemma 4.24. For any integer c ≥ 1, server job Sv
i,j with 1 ≤ j ≤ chv, and time t ≥ Φv + cH ,

lag(Sv
i,j , t,S) ≥ 0 holds.

Proof. Since Sv
i releases periodically, we have r(Sv

i,j) + T v = Φv + (j − 1)T v + T v = Φv + jT v. Since

j ≤ chv, we have r(Sv
i,j) + T v = Φv + jT v ≤ Φv + chvT v = Φv + cH . Thus, t ≥ r(Sv

i,j) + T v holds. By

Lemma 4.23, lag(Sv
i,j , t,S) ≥ 0.

We now prove lag-monotonicity for servers using server jobs’ lag-monotonicity.

Lemma 4.25. For any server Sv
i , positive integer c, and time instant t ≥ Φv, the following hold.

(a) lag(Sv
i , t,S) ≤ lag(Sv

i , t+ cH,S).

(b) A(Sv
i , t, t+ cH,S) ≤ cHuvi .

Proof. (a) By (4.14), we have

lag(Sv
i , t,S) =

∑
j>chv

lag(Sv
i,j−chv , t,S)

≤ {By Lemma 4.22}∑
j>chv

lag(Sv
i,j , t+ cH,S)

≤ {By Lemma 4.24}∑
1≤j≤chv

lag(Sv
i,j , t+ cH,S) +

∑
j>chv

lag(Sv
i,j , t+ cH,S)

= {By (4.14)}

lag(Sv
i , t+ cH,S).

(b) Assume that for Sv
i and time instant t ≥ Φv, A(Sv

i , t, t + cH,S) > cHuvi holds. Then, by (4.11), we

have A(Sv
i , t, t+ cH, I)−A(Sv

i , t, t+ cH,S) < cHuvi − cHuvi = 0. Thus, by (4.16), lag(Sv
i , t+ cH,S) <

lag(Sv
i , t,S), which contradicts Lemma 4.25(a).

120

Finally, LAG-monotonicity is shown in the following lemma.

Lemma 4.26. For any integer c and time instant t ≥ Φmax,

(a) LAG(Γs, t,S) ≤ LAG(Γs, t+ cH,S),

(b) A(Γs, t, t+ cH,S) ≤ cHUtot.

Proof. (a) By Lemma 4.25(a), we have
∑

v,i lag(S
v
i , t,S) ≤

∑
v,i lag(S

v
i , t+ cH,S). Thus, by (4.15), the

lemma holds.

(b) By Lemma 4.25(b), we have
∑

v,i A(S
v
i , t, t+cH,S) ≤

∑
v,i cHu

v
i . Since

∑
v,i u

v
i = Utot, by (4.7),

we have A(Γs, t, t+ cH,S) ≤ cHUtot.

We now address Step 2. We will show, in Lemma 4.33, that if A(Γs, t, t + H,S) = HUtot holds,

then scheduling decisions in S are identical at times t and t + H . We begin by proving some lemmas

(Lemmas 4.27–4.30) that establish server- and server-job-level properties at times t and t+ cH , when Γs’s

LAG values are equal. The next lemma follows from (4.17) and (4.12).

Lemma 4.27. For any positive integer c and time instant t ≥ Φmax, LAG(Γs, t,S) = LAG(Γs, t+ cH,S)

holds if and only if A(Γs, t, t+ cH,S) = cHUtot.

Proof. By (4.12), we have A(Γs, t, t + cH, I) = cHUtot. By (4.17), we have LAG(Γs, t + cH,S) =

LAG(Γs, t,S) + A(Γs, t, t + cH, I) − A(Γs, t, t + cH,S). Thus, if LAG(Γs, t,S) = LAG(Γs, t + cH,S)

holds, then we have A(Γs, t, t+ cH,S) = A(Γs, t, t+ cH, I) = cHUtot. Similarly, if A(Γs, t, t+ cH,S) =

cHUtot = A(Γs, t, t+ cH, I), then LAG(Γs, t,S) = LAG(Γs, t+ cH,S).

By Lemma 4.25(a), we have the following lemma. This lemma is similar to Lemma 3.18 shown in

Chapter 3.

Lemma 4.28. For any positive integer c and time instant t ≥ Φmax, if LAG(Γs, t,S) = LAG(Γs, t+ cH,S)

holds, then for any Sv
i , lag(Sv

i , t,S) = lag(Sv
i , t+ cH,S) holds.

Proof. Assume there is a server Sv
i , integer c > 0, and time t ≥ Φmax such that LAG(Γs, t,S) = LAG(Γs, t+

cH,S) and lag(Sv
i , t,S) ̸= lag(Sv

i , t + cH,S). By Lemma 4.25(a), lag(Sv
i , t,S) < lag(Sv

i , t + cH,S).

Therefore, by (4.15),

LAG(Γs, t,S) =
∑
w,k

lag(Sw
k , t,S)

121

= lag(Sv
i , t,S) +

∑
w,k:(w,v)̸=(k,i)

lag(Sw
k , t,S)

< {By Lemma 4.25(a) and since lag(Sv
i , t,S) < lag(Sv

i , t+ cH,S)}

lag(Sv
i , t+ cH,S) +

∑
w,k:(w,v)̸=(k,i)

lag(Sw
k , t+ cH,S)

= {By (4.15)}

LAG(Γs, t+ cH,S),

a contradiction.

Similarly, by Lemma 4.22, we have the following lemma.

Lemma 4.29. For any positive integer c and time instant t ≥ Φmax, if LAG(Γs, t,S) = LAG(Γs, t+ cH,S)

holds, then for any server job Sv
i,j , the following hold.

(a) lag(Sv
i,j , t,S) = lag(Sv

i,j+chv , t+ cH,S).

(b) A(Sv
i,j , 0, t,S) = A(Sv

i,j+chv , 0, t+ cH,S).

Proof. (a) Assume that there is a server job Sv
i,j , positive integer c, and time instant t ≥ Φmax such that

LAG(Γs, t,S) = LAG(Γs, t+ cH,S) and lag(Sv
i,j , t,S) ̸= lag(Sv

i,j+chv , t+ cH,S) hold. By Lemma 4.22,

we have lag(Sv
i,j , t,S) < lag(Sv

i,j+chv , t+ cH,S). By (4.14), we have

lag(Sv
i , t,S) =

∑
k≥1

lag(Sv
i,k, t,S)

= lag(Sv
i,j , t,S) +

∑
k≥1∧k ̸=j

lag(Sv
i,k, t,S)

< {By Lemma 4.22 and since lag(Sv
i,j , t,S) < lag(Sv

i,j+chv , t+ cH,S)}

lag(Sv
i,j+chv , t+ cH,S) +

∑
k≥1∧k ̸=j

lag(Sv
i,k+chv , t+ cH,S)

=
∑
k≥1

lag(Sv
i,k+chv , t+ cH,S)

=
∑

k>chv

lag(Sv
i,k, t+ cH,S)

≤ {By Lemma 4.24}

122

∑
1≤k≤chv

lag(Sv
i,k, t+ cH,S) +

∑
k>chv

lag(Sv
i,k, t+ cH,S)

=
∑
k≥1

lag(Sv
i,k, t+ cH,S)

= {By (4.14)}

= lag(Sv
i , t+ cH,S),

which contradicts Lemma 4.28.

(b) Assume there is a server job Sv
i,j , integer c > 0, and time t ≥ Φmax such that LAG(Γs, t,S) =

LAG(Γs, t+cH,S) and A(Sv
i,j , 0, t,S) ̸= A(Sv

i,j+chv , 0, t + cH,S). By Lemma 4.20, A(Sv
i,j , 0, t,S) >

A(Sv
i,j+chv , 0, t+ cH,S). By (4.13),

lag(Sv
i,j , t,S) = A(Sv

i,j , 0, t, I)− A(Sv
i,j , 0, t,S)

< {By Lemma 4.21 and since A(Sv
i,j , 0, t,S) > A(Sv

i,j+chv , 0, t+ cH,S)}

A(Sv
i,j+chv , 0, t+ cH, I)− A(Sv

i,j+chv , 0, t+ cH,S)

= lag(Sv
i,j+chv , t+ cH,S),

which contradicts Lemma 4.29(a).

Lemma 4.30. Assume that a server Sv
i , job index j, integer c, and time t exist such that j + chv ≥ 1,

min{t, t + cH} ≥ Φv, and A(Sv
i,j , 0, t,S) = A(Sv

i,j+chv , 0, t + cH,S). Then, f(Sv
i,j) ≤ t if and only if

f(Sv
i,j+chv) ≤ t+ cH .

Proof. Necessity. Assume that f(Sv
i,j) ≤ t holds. Then, we have A(Sv

i,j , 0, t,S) = Cv
i . Therefore,

A(Sv
i,j+chv , 0, t+ cH,S) = Cv

i holds. Thus, f(Sv
i,j+chv) ≤ t+ cH .

Sufficiency. Assume that f(Sv
i,j) > t holds. Then, we have A(Sv

i,j , 0, t,S) < Cv
i . Therefore,

A(Sv
i,j+chv , 0, t+ cH,S) < Cv

i holds. Thus, f(Sv
i,j+chv) > t+ cH .

Similar to Lemma 4.2, we have the following lemma.

Lemma 4.31. For any positive integers j and k such that j ≤ k and time instant t, A(Sv
i,j , 0, t,S) ≥

A(Sv
i,k, 0, t,S) holds.

123

If the schedule over the interval [t, t+H) in S repeats during [t+H, t+ 2H), then for each server job

Sv
i,j that is ready (resp., not ready) at time t, Sv

i,j+hv must be ready (resp., not ready) at time t +H . The

lemma below shows that this condition holds if Γs’s LAG values at time t and t+H are the same.

The following lemma shows that when LAG becomes equal at hyperperiod boundaries, scheduling

decisions are the same at those time instants. Recall that, the same property for P v
i = 1, was proved in

Lemma 3.30 for sequential tasks. However, the proof for arbitrary parallelization levels is more involved, as

we need to consider multiple server jobs per server.

Lemma 4.32. If there is a time instant t ≥ Φmax such that LAG(Γs, t,S) = LAG(Γs, t+H,S) holds, then

Sv
i,j is ready at time t if and only if Sv

i,j+hv is ready at time t+H .

Proof. By Lemma 4.29, we have

∀v, i, k : A(Sv
i,k, 0, t,S) = A(Sv

i,k+hv , 0, t+H,S). (4.25)

Sufficiency. Assume that Sv
i,j+hv is ready at time t+H , but Sv

i,j is not ready at time t. Since Sv
i,j+hv is

ready (hence, pending) at time t+H , by (4.25) and Lemma 4.16 (replacing j, t, and c with j+hv, t+H , and

−1, respectively), Sv
i,j is pending at time t. Since Sv

i,j is not ready at time t, by Definition 4.1, j > P v
i and

f(Sv
i,j−P v

i
) > t hold. By (4.25) and Lemma 4.30, we have f(Sv

i,j+hv−P v
i
) > t+H . Thus, by Definition 4.1,

Sv
i,j+hv is not ready at time t+H , a contradiction.

Necessity. Assume that Sv
i,j is ready at time t, but Sv

i,j+hv is not ready at time t+H . Since Sv
i,j is ready

at time t, by (4.25) and Lemma 4.16, Sv
i,j+hv is pending at time t. Since Sv

i,j+hv is not ready at time t+H ,

by Definition 4.1, j + hv > P v
i and f(Sv

i,j+hv−P v
i
) > t+H hold. We now consider two cases.

Case 1. j > P v
i . By (4.25) and Lemma 4.30, f(Sv

i,j−P v
i
) > t. Thus, by Definition 4.1, Sv

i,j is not ready

at time t. Contradiction.

Case 2. j ≤ P v
i . In this case, j+hv−P v

i ≤ P v
i +h

v−P v
i = hv. Since Sv

i,j+hv is pending but not ready

at time t +H , A(Sv
i,j+hv , 0, t +H,S) = 0. By Lemma 4.31, for each b ≥ j, A(Sv

i,b+hv , 0, t +H,S) = 0

holds. Therefore, we have

A(Sv
i , t, t+H,S) =

∑
1≤b≤j+hv

A(Sv
i,b, t, t+H,S)

= {By (4.9)}

124

∑
1≤b≤j+hv

(A(Sv
i,b, 0, t+H,S)− A(Sv

i,b, 0, t,S)). (4.26)

By (4.25), A(Sv
i,b, 0, t,S) = A(Sv

i,b+hv , 0, t+H,S) for each 1 ≤ b ≤ j. Thus, for each 1 ≤ b ≤ j, applying

A(Sv
i,b+hv , 0, t+H,S)− A(Sv

i,b, 0, t,S) = 0 in (4.26),

A(Sv
i , t, t+H,S) =

∑
1≤b≤hv

A(Sv
i,b, 0, t+H,S)−

∑
j+1≤b≤j+hv

A(Sv
i,b, 0, t,S)

≤
∑

1≤b≤hv

A(Sv
i,b, 0, t+H,S)

= { Since j + hv − P v
i ≤ hv}

A(Sv
i,j+hv−P v

i
, 0, t+H,S) +

∑
1≤b≤hv∧

b̸=j+hv−P v
i

A(Sv
i,b, 0, t+H,S)

< {Since A(Sv
i,b, 0, t+H,S) ≤ Cv

i and Sv
i,j+hv−P v

i
is pending at time t+H}

Cv
i + (hv − 1)Cv

i

= {By Definition 4.3}

Huvi . (4.27)

By (4.16), (4.11), and (4.27), we have lag(Sv
i , t + H,S) > lag(Sv

i , t,S) + Huvi − Huvi = lag(Sv
i , t,S),

which contradicts Lemma 4.28.

We now complete Step 2 by giving the following lemma. Using Lemma 4.32, we show that if the time

allocated to Γs over an interval [t, t+H) equals HUtot, then Sv
i,j is scheduled at time t if and only if Sv

i,j+hv

is scheduled at time t+H .

Lemma 4.33. For any t ≥ Φmax, if A(Γs, t, t+H,S) = HUtot holds, then the following hold.

(a) For any Sv
i,j , A(S

v
i,j , t, t+ 1,S) = A(Sv

i,j+hv , t+H, t+H + 1,S).

(b) For any Sv
i , A(Sv

i , t, t+ 1,S) = A(Sv
i , t+H, t+H + 1,S).

(c) A(Γs, t, t+ 1,S) = A(Γs, t+H, t+H + 1,S).

Proof. (a) By Lemma 4.27, we have LAG(Γs, t,S) = LAG(Γs, t + H,S). Thus, by Lemma 4.32, Sv
i,j is

ready at time t if and only if Sv
i,j+hv is ready at time t +H . By Lemma 4.11, y(Sv

i,j+hv) = y(Sv
i,j) +H

125

holds. Thus, for each pair of server jobs Sv
i,j and Sw

k,ℓ, we have y(Sv
i,j)− y(Sw

k,ℓ) = y(Sv
i,j+hv)− y(Sw

k,ℓ+hw).

Since ties are broken consistently, Sv
i,j has higher priority than Sw

k,ℓ if and only if Sv
i,j+hv has higher priority

than Sw
k,ℓ+hw . Thus, Sv

i,j is the pth highest-priority ready job at time t if and only if Sv
i,j+hv is the pth

highest-priority ready job at time t + H . Therefore, Sv
i,j is scheduled at time t if and only if Sv

i,j+hv is

scheduled at time t+H . Thus, (a) holds.

(b) Follows from (a) and (4.6).

(c) Follows from (b) and (4.7).

We also show the following lemma, which will be useful for Step 3.

Lemma 4.34. For any positive integer c and time t′ ≥ Φmax, if A(Γs, t
′, t′ + cH,S) = cHUtot holds, then,

for each time instant t ∈ [t′, t′ + (c− 1)H], A(Γs, t, t+H,S) = HUtot holds.

Proof. We first prove the following claim.

Claim 4.5. A(Γs, t
′, t′ +H,S) = HUtot.

Proof. For c = 1, the claim holds by the lemma assumptions, so assume c ≥ 2. Assume for a contradiction

that A(Γs, t
′, t′ +H,S) ̸= HUtot. Then, by Lemma 4.26(b), we have A(Γs, t

′, t′ +H,S) < HUtot. Since

[t′, t′ + cH) =
⋃c−1

i=0 [t
′ + iH, t′ + (i+ 1)H), we have

A(Γs, t
′, t′ + cH,S)

= A(Γs, t
′, t′ +H,S) +

c−1∑
i=1

A(Γs, t
′ + iH, t′ + (i+ 1)H,S)

< {By Lemma 4.26(b) and since A(Γs, t
′, t′ +H,S) < HUtot}

HUtot + (c− 1)HUtot

= cHUtot,

a contradiction.

We now prove the lemma. Assume for a contradiction that time t ∈ [t′, t′ + (c − 1)H] exists such that

A(Γs, t, t + H,S) ̸= HUtot. By Claim 4.5, t > t′. Thus, A(Γs, t − 1, t + H − 1,S) = HUtot. Since

[t, t +H) = ([t − 1, t +H−1)
⋃
[t +H−1, t +H)) \ [t−1, t), we have A(Γs, t, t +H,S) = A(Γs, t −

126

1, t + H − 1,S) + A(Γs, t + H − 1, t + H,S) − A(Γs, t − 1, t,S), which by Lemma 4.33(c) equals

A(Γs, t− 1, t+H − 1,S) = HUtot, a contradiction.

4.4.3 Analysis of DAG Tasks

We now give an analysis of schedule G that completes Steps 3 and 4. We begin by showing, in

Lemmas 4.35–4.48, that there are properties of lag and LAG in G that are analogous to the properties in S.

Intuitively, these properties hold as a job of Γ can execute only when its linked server job is scheduled.

Lemma 4.35. If τvi,j is linked to Sv
i,k, then for any time instant t, A(τvi,j , 0, t,G) = A(Sv

i,k, 0, t,S) holds.

Proof. Follows from the budget Consumption Rule, Assumption 4.1, and Rule R3.

By Lemmas 4.6, 4.31, and 4.35, we have the following lemma.

Lemma 4.36. For any positive integers j and k such that j < k and time instant t, A(τvi,j , 0, t,G) ≥

A(τvi,k, 0, t,G) holds.

Proof. Assume τvi,j (resp., τvi,k) is linked to Sv
i,p (resp., Sv

i,q). By Lemmas 4.6 and 4.31, q > p and

A(Sv
i,p, 0, t,S)≥A(Sv

i,q, 0, t,S). By Lemma 4.35, A(τvi,j , 0, t,G) ≥ A(τvi,k, 0, t,G).

Lemma 4.37. For any job τvi,j , positive integer c, and time instant t ≥ Φv, A(τvi,j , 0, t,G) ≥ A(τvi,j+chv , 0, t+

cH,G) holds.

Proof. Assume τvi,j (resp., τvi,j+chv) is linked to Sv
i,k (resp., Sv

i,ℓ). By Lemma 4.20, A(Sv
i,k, 0, t,S) ≥

A(Sv
i,k+chv , 0, t+ cH,S). By Lemma 4.6, ℓ ≥ k + chv. Thus, by Lemma 4.31, we have A(Sv

i,k+chv , 0, t+

cH,S) ≥ A(Sv
i,ℓ, 0, t + cH,S). Hence, A(Sv

i,k, 0, t,S) ≥ A(Sv
i,ℓ, 0, t + cH,S) holds. By Lemma 4.35,

A(τvi,j , 0, t,G) ≥ A(τvi,j+chv , 0, t+ cH,G).

By Lemma 4.37, we can prove Lemmas 4.38–4.48 for Γ, which are analogous to Lemmas 4.21–4.29

and 4.34 for Γs. Readers may wish to skip the “identical” proofs.

Lemma 4.38. For any job τvi,j , positive integer c, and time instant t ≥ Φv, A(τvi,j , 0, t, I) = A(τvi,j+chv , 0, t+

cH, I) holds.

Proof. Follows from (4.10) and a proof similar to Lemma 4.21.

127

Lemma 4.39. For any job τvi,j , positive integer c, and time instant t ≥ Φv, lag(τvi,j , t,G) ≤ lag(τvi,j+chv , t+

cH,G) holds.

Proof. By (4.13), we have

lag(τvi,j , t,G) = A(τvi,j , 0, t, I)− A(τvi,j , 0, t,G)

≤ {By Lemmas 4.37 and 4.38}

A(τvi,j+chv , 0, t+ cH, I)−

A(τvi,j+chv , 0, t+ cH,G)

= {By (4.13)}

lag(τvi,j+chv , t+ cH,G).

Thus, the lemma holds.

Lemma 4.40. For any job τvi,j and time instant t ≥ r(τv1,j) + T v, lag(τvi,j , t,G) ≥ 0 holds.

Proof. Since τvi,j is first scheduled at time r(τv1,j) in I, we have

A(τvi,j , 0, t, I) = A(τvi,j , r(τ
v
1,j), t, I)

= {By (4.10)}

min{uvi (t− r(τv1,j)), Cv
i }

= {Since t ≥ r(τv1,j) + T v and uvi T
v = Cv

i }

Cv
i .

Since τvi,j does not execute more than Cv
i in G, we have A(τvi,j , 0, t,G) ≤ Cv

i . Thus, we have lag(τvi,j , t,G) =

A(τvi,j , 0, t, I)− A(τvi,j , 0, t,G) ≥ Cv
i − Cv

i ≥ 0.

Lemma 4.41. For any job τvi,j such that 1 ≤ j ≤ chv and any time instant t ≥ Φv + cH , lag(τvi,j , t,G) ≥ 0

holds.

Proof. Since Gv releases periodically, r(τv1,j)+T
v = Φv+(j−1)T v+T v = Φv+ jT v. Since j ≤ chv, we

have r(τv1,j) + T v = Φv + jT v ≤ Φv + chvT v = Φv + cH . Thus, t ≥ r(τv1,j) + T v holds. By Lemma 4.40,

lag(τvi,j , t,G) ≥ 0 holds.

128

Lemma 4.42. For any task τvi , positive integer c, and time instant t ≥ Φv, lag(τvi , t,G) ≤ lag(τvi , t+ cH,G)

holds.

Proof. Since τvi can only execute when server jobs of Sv
i are scheduled, by Lemma 4.25(b), we have

A(τvi , t, t+ cH,G) ≤ cHuvi . (4.28)

By (4.16), we have

lag(τvi , t+ cH,G) = lag(τvi , t,G) + A(τvi , t, t+ cH, I)

− A(τvi , t, t+ cH,G)

≥ {By (4.11) and (4.28)}

lag(τvi , t,G) + cHuvi − cHuvi

= lag(τvi , t,G).

Lemma 4.43. For any positive integer c and time instant t ≥ Φmax, the following hold.

(a LAG(Γ, t,G) ≤ LAG(Γ, t+ cH,G).

(b) A(Γ, t, t+ cH,G) ≤ cHUtot.

Proof. (a) By (4.15), we have

LAG(Γ, t,G) =
∑
v,i

lag(τvi , t,G)

≤ {By Lemma 4.42}∑
v,i

lag(τvi , t+ cH,G)

= {By (4.15)}

LAG(Γ, t+ cH,G).

129

(b) Assume that for a time instant t ≥ Φmax, A(Γ, t, t+ cH,G) > cHUtot holds. By (4.17) and (4.12),

we have

LAG(Γ, t+ cH,G) = LAG(Γ, t,G) + A(Γ, t, t+ cH, I)

− A(Γ, t, t+ cH,G)

< LAG(Γ, t,G) + cHUtot − cHUtot

= LAG(Γ, t,G), (4.29)

which contradicts (a).

Lemma 4.44. For any positive integer c and time instant t ≥ Φmax, if LAG(Γ, t,G) = LAG(Γ, t+ cH,G)

holds, then for any τvi , lag(τvi , t,G) = lag(τvi , t+ cH,G) holds.

Proof. Assume there is a task τvi , integer c > 0, and time t ≥ Φmax such that LAG(Γ, t,G) = LAG(Γ, t+

cH,G) and lag(τvi , t,G) ̸= lag(τvi , t + cH,G) hold. By Lemma 4.42, lag(τvi , t,G) < lag(τvi , t + cH,G).

Thus, by (4.15), we have

LAG(Γ, t,G)

=
∑
w,k

lag(τwk , t,G)

= lag(τvi , t,G) +
∑

w ̸=v,k ̸=i

lag(τwk , t,G)

< {By Lemma 4.42 and lag(τvi , t,G) < lag(τvi , t+ cH,G)}

lag(τvi , t+ cH,G) +
∑

w ̸=v,k ̸=i

lag(τwk , t+ cH,G)

= {By (4.15)}

LAG(Γ, t+ cH,G),

a contradiction.

Lemma 4.45. For any positive integer c and time t ≥ Φmax, if LAG(Γ, t,G) = LAG(Γ, t+ cH,G), then for

any job τvi,j , the following hold.

(a) lag(τvi,j , t,G) = lag(τvi,j+chv , t+ cH,G).

130

(b) A(τvi,j , 0, t,G) = A(τvi,j+chv , 0, t+ cH,G).

Proof. (a) Assume a job τvi,j exists such that lag(τvi,j , t,G) ̸= lag(τvi,j+chv , t + cH,G). By Lemma 4.39,

lag(τvi,j , t,G) < lag(τvi,j+chv , t+ cH,G). By (4.14), we have

lag(τvi , t,G) =
∑
k≥1

lag(τvi,k, t,G)

= lag(τvi,j , t,G) +
∑

k≥1∧k ̸=j

lag(τvi,k, t,G)

< {By Lemma 4.39 and since lag(τvi,j , t,G) < lag(τvi,j+chv , t+ cH,G)}

lag(τvi,j+chv , t+ cH,G) +
∑

k≥1∧k ̸=j

lag(τvi,k+chv , t+ cH,G)

=
∑
k≥1

lag(τvi,k+chv , t+ cH,G)

=
∑

k>chv

lag(τvi,k, t+ cH,G)

≤ {By Lemma 4.41}∑
1≤k≤chv

lag(τvi,k, t+ cH,G) +
∑

k>chv

lag(τvi,k, t+ cH,G)

=
∑
k≥1

lag(τvi,k, t+ cH,G)

= {By (4.14)}

lag(τvi , t+ cH,G),

which contradicts Lemma 4.44.

(b) Assume for a contradiction that a job τvi,j exists such that A(τvi,j , 0, t,G) ̸= A(τvi,j+chv , 0, t+ cH,G).

By Lemma 4.37, A(τvi,j , 0, t,G) > A(τvi,j+chv , 0, t+cH,G). By (4.13), we have

lag(τvi,j , t,G) = A(τvi,j , 0, t, I)− A(τvi,j , 0, t,G)

< {By Lemma 4.38 and since A(τvi,j , 0, t,G) > A(τvi,j+chv , 0, t+ cH,G)}

A(τvi,j+chv , 0, t+ cH, I)− A(τvi,j+chv , 0, t+ cH,G)

= lag(τvi,j+chv , t+ cH,G),

131

which contradicts (a).

Lemma 4.46. For any positive integer c and time instant t ≥ Φmax, LAG(Γ, t,G) = LAG(Γ, t + cH,G)

holds if and only if A(Γ, t, t+ cH,G) = cHUtot.

Proof. By (4.12), A(Γ, t, t+ cH, I) = cHUtot. By (4.17), LAG(Γ, t+ cH,G) = LAG(Γ, t,G) +A(Γ, t, t+

cH, I) − A(Γ, t, t + cH,G). Thus, if LAG(Γ, t,G) = LAG(Γ, t + cH,G) holds, then we have A(Γ, t, t +

cH,G) = A(Γ, t, t + cH, I) = cHUtot. Similarly, if A(Γ, t, t + cH,G) = cHUtot = A(Γ, t, t + cH, I)

holds, then LAG(Γ, t,G) = LAG(Γ, t+ cH,G) holds.

Lemma 4.47. For any positive integer c and time t ≥ Φmax, if LAG(Γ, t,G) = LAG(Γ, t+ cH,G), then the

following hold.

(a) A(Γs, t, t+ cH,S) = cHUtot.

(b) If a server job Sv
i,j is scheduled at time t′ ∈ [t, t+ cH), then a job is linked to it.

Proof. (a) By Lemma 4.46, we have A(Γ, t, t + cH,G) = cHUtot. Since jobs in Γ only executes when

server jobs in Γs is scheduled, we have A(Γs, t, t + cH,S) ≥ cHUtot. By Lemma 4.26(b), we have

A(Γs, t, t+ cH,S) = cHUtot.

(b) Since, by (a), A(Γ, t, t+ cH,G) = A(Γs, t, t+ cH,S) = cHUtot, the lemma holds.

Lemma 4.48. For any positive integer c and time t′ ≥ Φmax, if LAG(Γ, t′,G) = LAG(Γ, t′ + cH,G) holds,

then for each t ∈ [t′, t′ + (c− 1)H], LAG(Γ, t,G) = LAG(Γ, t+H,G).

Proof. Assume otherwise. Let t ≥ t′ be the first time instant such that LAG(Γ, t,G) ̸= LAG(Γ, t+H,G) holds.

By Lemma 4.46 and 4.43(b), we have A(Γ, t, t+H,G) < HUtot. By Lemma 4.47(a), A(Γs, t
′, t′+cH,S) =

cHUtot. Thus, by Lemma 4.34, for each time instant t ∈ [t′, t′ + (c− 1)H], we have A(Γs, t, t+H,S) =

HUtot. Thus, A(Γ, t, t+H,G) < A(Γs, t, t+H,S). Hence, time t′′ ∈ [t, t+H) exists such that a server

job is scheduled at t′′ but no job is linked to it, contradicting Lemma 4.47(b).

Definition 4.5. Let ∆ = ⌈maxv,i{R(Sv
i)}/H⌉H , where R(Sv

i) is defined in (4.2). Note that ∆ ≥

maxv,i{R(Sv
i)} and ∆ ≥ H hold. ◀

We now address Step 3 by giving Lemmas 4.49–4.51. The repetition of the graph-level schedule G at

time t′ requires that the server-level schedule S repeats at time t′ and each server job scheduled at or after t′

132

has a linked job. To ensure the latter, we need to consider a larger interval of length (2H +∆) as shown in

the following lemma.

Lemma 4.49. If LAG(Γ, ts,G) = LAG(Γ, ts + 2H +∆,G) holds such that ts ≥ Φmax, then the following

hold.

(a) If a server job Sv
i,j is released during [ts, ts + 2H), then a job is linked to it.

(b) For each v and j ≤ hv, f(τvnv ,j) ≤ ts + 2H +∆ holds.

Proof. (a) Assume that there is a server job Sv
i,j such that ts ≤ r(Sv

i,j) < ts + 2H holds, but no job is linked

to it. Since Sv
i,j’s response time is at most R(Sv

i), by Definition 4.5, we have f(Sv
i,j) ≤ r(Sv

i,j) +R(Sv
i) <

ts + 2H +∆. Therefore, there is a time instant tb such that ts ≤ tb < ts + 2H +∆ and Sv
i,j is scheduled

during [tb, tb + 1). Since H divides ∆, by Lemma 4.47(b), a job is linked to Sv
i,j , a contradiction.

(b) We first prove the following claim.

Claim 4.6. f(τvnv ,1) ≤ ts +H +∆.

Proof. Let Sv
nv ,k be the first server job of Sv

nv that is released at or after ts. Since server jobs are released

periodically and ts ≥ Φmax, r(Sv
nv ,k) < ts +H holds. Since Sv

nv ,k’s response time is at most R(Sv
nv), by

Definition 4.5, we have f(Sv
nv ,k) < ts +H +R(Sv

nv) ≤ ts +H +∆. By Lemma 4.49(a), Sv
nv ,k is linked

to a job τvnv ,j . By Lemma 4.8, f(τvnv ,j) ≤ f(Sv
nv ,k). If j = 1, then the claim holds, so assume j > 1. Let

Sv
nv ,ℓ be the server job to which τvnv ,1 is linked. By Lemmas 4.6 and 4.2, ℓ < k and f(Sv

nv ,ℓ) ≤ f(Sv
nv ,k)

hold. Therefore, by Lemma 4.8, f(τvnv ,1) ≤ f(Sv
nv ,ℓ) ≤ f(Sv

nv ,k) < ts +H +∆ holds.

We now prove the lemma. By Claim 4.6, we have f(τvnv ,1) ≤ ts + H + ∆. Hence, since H divides

∆ and LAG(Γ, ts,G) = LAG(Γ, ts + 2H + ∆,G), by Lemma 4.48, we have LAG(Γ, ts + H + ∆,G) =

LAG(Γ, ts+2H+∆,G). Thus, by Lemma 4.45(b), we have A(τvnv ,hv+1, 0, ts+2H+∆,G) = A(τvnv ,1, 0, ts+

H +∆,G) = Cv
nv . By Lemma 4.36, for each j ≤ hv, we have A(τvnv ,j , 0, ts + 2H +∆,G) = Cv

nv . Thus,

for each j ≤ hv, τvnv ,j completes at or before time ts + 2H +∆.

Using Lemmas 4.47–4.49, we now prove that if Γ’s LAG values at time t and t+ 2H +∆ are the same,

then this value remains the same over any future H-sized interval.

133

Lemma 4.50. If LAG(Γ, ts,G) = LAG(Γ, ts +2H +∆,G) holds such that ts ≥ Φmax, then for each t ≥ ts,

LAG(Γ, t,G) = LAG(Γ, t+H,G) holds.

Proof. Let t be the first time instant at or after ts such that LAG(Γ, t,G) ̸= LAG(Γ, t+H,G) holds. Since

H divides ∆, by Lemma 4.48 and Definition 4.5, we have the following.

t > ts +H +∆ ∧ t > ts + 2H (4.30)

We first prove the following claim.

Claim 4.7. If a server job Sv
i,j is released during [ts + 2H, t), then a job is linked to it.

Proof. Figure 4.4 illustrates this proof. Assume otherwise. Let Sv
i,j be the first job of Sv

i released during

[ts + 2H, t) to which no job is linked. Let tr = r(Sv
i,j). By Lemma 4.49(a) and the definition of tr, we

have:

Property 4.1. Each server job of Sv
i released during [ts, tr) has a job that is linked to it.

Since H divides ∆ and tr ∈ [ts + 2H, t), by the definition of t, we have

LAG(Γ, tr −H,G) = LAG(Γ, tr,G). (4.31)

Since server jobs are released periodically, r(Sv
i,j−1) = tr − T v ≥ tr −H ≥ ts +2H −H = ts +H .

Thus, by Property 4.1, a job τvi,ℓ is linked to Sv
i,j−1. We now prove that τvi,ℓ+1 is linked to Sv

i,j , thereby

reaching a contradiction. By Rule R2, it suffices to prove that r(τvi,ℓ+1) ≤ tr. We now prove the claim by

considering two cases.

Case 1. i = 1. Thus, τvi is the source node of Gv. Therefore, r(τvi,ℓ+1) = r(τvi,ℓ) + T v. Since τvi,ℓ is

linked to Sv
i,j−1, by Rule R2, we have r(τvi,ℓ) ≤ r(Sv

i,j−1) = tr − T v. Since τvi releases job periodically,

we have r(τvi,ℓ+1) ≤ tr.

Case 2. i > 1. Thus, τvi is a non-source node. Assume to the contrary that r(τvi,ℓ+1) > tr (see

Figure 4.4). Since a non-source node’s (ℓ+ 1)st job is released once each of its predecessors’ (ℓ+ 1)st job

completes, there is a job τvk,ℓ+1 such that τvk ∈ pred(τvi) and f(τvk,ℓ+1) > tr. Therefore, we have

A(τvk,ℓ+1, 0, tr,G) < Cv
k . (4.32)

134

Time

τvk,ℓ−hv+1 complete τvk,ℓ+1 not complete

ts tr −H tr − T v tr

Sv
i,jSv

i,j−1Sv
i,j−hv+1Sv

i,j−hv

τvi,ℓ+1τvi,ℓτvi,ℓ−hv+2τvi,ℓ−hv+1

Release

Figure 4.4: Illustration of Claim 4.7. Blue arrows from job releases to server job releases represent linking.

Since tr ∈ [ts + 2H, t), we have tr −H ∈ [ts, t). By Lemma 4.11, Sv
i,j−hv is released at time tr −H

(thus, j > hv). By Property 4.1, each server job of Sv
i released during [tr − H, tr) has a job to which

it is linked. Thus, since Sv
i,j−hv and Sv

i,j−1 are released at time tr −H and tr − T v, respectively, each

server job Sv
i,j−b such that 1 ≤ b ≤ hv has a linked job. Since τvi,ℓ is linked to Sv

i,j−1, by Rule R2, for

each 1 ≤ b ≤ hv, τvi,ℓ−b+1 is linked to Sv
i,j−b. Thus, τvi,ℓ−hv+1 (hence, ℓ + 1 > hv) is linked to Sv

i,j−hv .

Since τvi,ℓ−hv+1 is linked to Sv
i,j−hv and τvk ∈ pred(τvi), f(τvk,ℓ−hv+1) ≤ r(Sv

i,j−hv) = tr −H . Therefore,

we have A(τvk,ℓ−hv+1, 0, tr − H,G) = Cv
k . By (4.31), Lemma 4.45(b), we have A(τvk,ℓ+1, 0, tr,G) =

A(τvk,ℓ−hv+1, 0, tr −H,G) = Cv
k , which contradicts (4.32).

Claim 4.8. If a server job Sv
i,j is scheduled during [t− 1, t), then a job is linked to it.

Proof. By (4.30), t > ts +H +∆ holds. By Definition 4.5, any server job released before ts completes at

or before time ts +∆ < t. Therefore, no server job released before ts is pending at time t− 1. Thus, Sv
i,j is

released at or after time ts. By Lemma 4.49(a) and Claim 4.7, a job is linked to Sv
i,j .

Using the above claims, we now prove the lemma. By (4.30) and the definition of t, we have

LAG(Γ, t−H − 1,G) = LAG(Γ, t− 1,G). (4.33)

By (4.33) and Lemma 4.47(a), we have A(Γs, t−H − 1, t− 1,S) = HUtot. Therefore, by Lemma 4.33(c),

we have

A(Γs, t−H − 1, t−H,S) = A(Γs, t− 1, t,S). (4.34)

135

By (4.33) and Lemma 4.47(b), any server job scheduled during [t−H − 1, t−H) has a job linked to it. By

Claim 4.8, any server job scheduled during [t− 1, t) has a job linked to it. Therefore, by (4.34), we have

A(Γ, t−H − 1, t−H,G) = A(Γ, t− 1, t,G). (4.35)

By (4.33), (4.12), and (4.35), we have LAG(Γ, t−1,G)+A(Γ, t−1, t, I)−A(Γ, t−1, t,G) = LAG(Γ, t−H−

1,G)+A(Γ, t−H−1, t−H, I)−A(Γ, t−H−1, t−H,G). Thus, by (4.17), LAG(Γ, t,G) = LAG(Γ, t−H,G)

holds, a contradiction.

We now complete Step 3 by giving the following lemma.

Lemma 4.51. If LAG(Γ, ts,G) = LAG(Γ, ts + 2H + ∆,G) holds such that ts ≥ Φmax and Rv is the

maximum response time of DAG jobs of Gv that complete at or before time ts + 2H + ∆ in G, then the

response time of Gv is Rv in G.

Proof. Assume for a contradiction that Gv
j is the first DAG job of Gv with response time more than Rv.

Assume that τvnv ,j completes at time t, i.e., t = f(τvnv ,j). Thus, we have

t− r(τv1,j) > Rv. (4.36)

Since Rv is the maximum observed response time of Gv at or before ts+2H+∆, we have t > ts+2H+∆.

Therefore, by Lemma 4.49(b), j > hv holds. At time t−1, τvnv ,j is pending. Thus, A(τvnv ,j , 0, t−1,G) < Cv
i .

Since t− 1 ≥ ts + 2H +∆, by Lemma 4.50, we have LAG(Γ, t− 1,G) = LAG(Γ, t−H − 1,G). Then, by

Lemma 4.45(b), A(τvnv ,j−hv , 0, t−H − 1,G) = A(τvnv ,j , 0, t− 1,G) < Cv
i . Thus, τvnv ,j−hv completes after

time t−H − 1, i.e., f(τvnv ,j−hv) ≥ t−H . Thus, we have f(τvnv ,j−hv)− r(τv1,j−hv) ≥ t−H − r(τv1,j−hv).

By Lemma 4.11, t − H − r(τv1,j−hv) = t − r(τv1,j), which by (4.36), exceeds Rv. Therefore, we have

f(τvnv ,j−hv)− r(τv1,j−hv) > Rv. Thus, Gv
j−hv ’s response time is more than Rv, a contradiction.

We now complete Step 4. Our goal is to show that there exists a time instant ts such that Γ’s LAG values

at time ts and ts + 2H +∆ are the same. This, by Lemma 4.51, implies that a DAG job with the maximum

response time completes execution at or before time ts + 2H +∆. We first give an upper bound and a lower

bound of LAG of Γ at any time instant.

Definition 4.6. Let E =
∑N

v=1

∑nv

i=1R(τ
v
i)u

v
i , F =

∑N
v=1

∑nv

i=1C
v
i , and G = ⌈E + F + 1⌉. ◀

136

Since τvi ’s response time is at most R(τvi) (by Theorem 4.1), we can show that τvi ’s lag at any time is at

most R(τvi)u
v
i .

Lemma 4.52. For any τvi and time instant t, lag(τvi , t,G) ≤ R(τvi)uvi holds.

Proof. Since τvi executes at rate uvi starting from time Φv in I , for any time t′ ≤ Φv+R(τvi), A(τ
v
i , 0, t

′, I) ≤

R(τvi)u
v
i . Thus, by (4.15), for t ≤ Φv +R(τvi), the claim holds. We thus assume t > Φv +R(τvi). Let Gv

j

be the last DAG job of Gv released at or before time t−R(τvi). Hence, by Theorem 4.1, any job τvi,k such

that k ≤ j completes by time t−R(τvi) +R(τvi) = t in G. Thus, we have

A(τvi , 0, t,G) ≥
j∑

k=1

Cv
i

=

j∑
k=1

T vuvi

=

j∑
k=1

(r(τv,1)k + 1− r(τv,1)k)uvi

= (r(τv,1)j + 1− r(τv,1)1)uvi

= (r(τv,1)j + 1− Φv)uvi

≥ (t−R(τvi)− Φv)uvi . (4.37)

By (4.11), we have A(τvi , 0, t, I) = (t − Φv)uvi . Thus, by (4.14) and (4.37), we have lag(τvi , t,G) ≤

R(τvi)u
v
i .

Since no job executes before its release, τvi ’s lag at any time is at least −Cv
i . Using these, we have the

following lemma.

Lemma 4.53. For any time instant t, −F ≤ LAG(Γ, t,G) ≤ E.

Proof. LAG(Γ, t,G) ≤ E holds by Definition 4.6 and (4.15), and since per-task lag is upper bounded by

R(τvi)u
v
i . LAG(Γ, t,G) ≥ −F holds by Definition 4.6 and (4.15), and since per-task lag is lower bounded by

Cv
i .

Since all task parameters are integers, if for any positive c, LAG(Γ, t + cH,G) > LAG(Γ, t,G) holds,

then Γ’s LAG at time t+ cH is at least one unit larger than its LAG at time t. Therefore, since LAG either

137

increases or remains the same over any interval [t, t+ cH), it cannot increase over G consecutive intervals of

size cH without violating the LAG upper bound. Thus, we have the following lemma.

Lemma 4.54. There is a time instant t ∈ [Φmax,Φmax+G(2H +∆)] such that LAG(Γ, t,G) = LAG(Γ, t+

2H +∆,G) holds.

Proof. Assume otherwise. Then for each time instant t ∈ [Φmax,Φmax + G(2H + ∆)], LAG(Γ, t,G) ̸=

LAG(Γ, t+2H +∆,G). Since ∆ divides H , by Lemma 4.46, for each t ∈ [Φmax,Φmax+G(2H +∆)], we

have A(Γ, t, t+2H+∆,G) ̸= (2H+∆)Utot. Thus, by Lemma 4.43(b), for each t ∈ [Φmax,Φmax+G(2H+

∆)], we have A(Γ, t, t + 2H + ∆,G) < (2H + ∆)Utot. We have Utot =
∑N

v=1 U
v =

∑N
v=1

∑nv

i=1 u
v
i =∑N

v=1

∑nv

i=1C
v
i /T

v = (
∑N

v=1

∑nv

i=1 h
vCv

i)/H . Since for each v and i, hv and Cv
i are integers, HUtot is

also an integer. Since H divides ∆, (2H + ∆)Utot is also an integer. Thus, A(Γ, t, t + 2H + ∆,G) ≤

(2H +∆)Utot − 1.

Since [Φmax,Φmax +G(2H +∆)] =
⋃G−1

i=0 [Φmax + i(2H +∆),Φmax + (i+1)(2H +∆)), we have

A(Γ,Φmax,Φmax +G(2H +∆),G) =
∑G−1

i=0 A(Γ,Φmax + i(2H +∆),Φmax + (i+ 1)(2H +∆),G) ≤∑G−1
i=0 ((2H +∆)Utot − 1) ≤ G(2H +∆)Utot −G. Thus, by (4.17), we have

LAG(Γ,Φmax +G(2H +∆),G)

= LAG(Γ,Φmax,G) + A(Γ,Φmax,Φmax +G(2H +∆), I)

− A(Γ,Φmax,Φmax +G(2H +∆),G)

≥ LAG(Γ,Φmax,G) +G(2H +∆)Utot −G(2H +∆)Utot +G

≥ {By Lemma 4.53 and Definition 4.6}

− F + E + F + 1

≥ E + 1,

which contradicts Lemma 4.53.

Finally, we have the following theorem.

Theorem 4.2. If Rv is the maximum response time of any DAG job of Gv completed at or before Φmax +

(G + 1)(2H +∆), then Gv’s response time is Rv, where ∆ and G are defined by Definitions 4.5 and 4.6,

respectively.

138

Proof. Follows from Lemmas 4.54 and 4.51.

Thus, simulating schedule G for at most Φmax + (G+ 1)(2H +∆) time units is sufficient to determine

the maximum response times of DAGs. However, the simulation can be terminated early by checking whether

the condition given in Lemma 4.51 is met. For pseudo-harmonic task systems, by Definition 4.6 (resp.,

Definition 4.5 and (4.2)), G (resp., ∆) is polynomial with respect to the task and processor count and task

parameters. Thus, for pseudo-harmonic task systems, simulating for Φmax + (G+ 1)(2H +∆) time takes

pseudo-polynomial time.

Note that Leung and Merrill gave a simulation length of Φmax + 2H for deriving exact response-time

bound of independent periodic tasks under uniprocessor EDF. The simulation length in Theorem 4.2 becomes

equal to Φmax + 2H when G = 0 and ∆ = 0 hold. However, for M = 1, ∆ ≥ 1 holds by Definition 4.5 (as

R(Sv
i) > 0 for all v and i). Moreover, by (4.2), R(Sv

i) is at least T v + Cv
i even for M = 1 due to analytical

pessimism present in SRT response-time analysis [Amert et al., 2019].

Removing Assumption 4.1. Let G′ be a schedule of Γ when Assumption 4.1 does not hold. Theorem 4.3

below ensures that no job finishes later in G′ than G. Informally, no job is linked to a later server job in G′

than in G.

Theorem 4.3. For each job τvi,j , if it completes at time t and t′ in G and G′, respectively, then t′ ≤ t holds.

Proof. We first note that the server schedule corresponding to both G and G′ are the same. We now prove the

following claims.

Claim 4.9. If a job τvi,j is linked to Sv
i,k and Sv

i,ℓ in G and G′, respectively, and ℓ ≤ k holds, then τvi,j

finishes execution in G′ at or before τvi,j finishes execution in G.

Proof. Suppose τvi,j finishes execution at time t and t′ in G and G′, respectively. Since ℓ ≤ k holds, by

Lemma 4.2, f(Sv
i,ℓ) ≤ f(Sv

i,k). Since τvi,j executes for Cv
i time units in G, t = f(Sv

i,k) holds. Since τvi,j

executes for at most Cv
i time units in G′, t′ ≤ f(Sv

i,ℓ) holds. Thus, t′ ≤ t.

Claim 4.10. If a job τvi,j is linked to Sv
i,k and Sv

i,ℓ in G and G′, respectively, then ℓ ≤ k holds.

Proof. Assume otherwise. Let t be the first time instant such that t = r(Sv
i,k) holds and there is a job τvi,j

that is linked to Sv
i,k in G, but it is linked to Sv

i,ℓ in G′ such that ℓ > k holds. Therefore, r(Sv
i,k) < r(Sv

i,ℓ).

We consider two cases.

139

Case 1. i = 1. Since τv1 does not have any predecessor, τv1,j’s release time is the same in both G and

G′. Let tr be the time instant when τv1,j is released. By Rule R2, tr ≤ r(Sv
1,k). Since τv1,j is linked to Sv

1,k

in G, by Rule R2, τv1,j−1 (if any) is already linked to a server job by time t in G. By the definition of time t,

τv1,j−1 (if any) is linked to a server job by time t in G′. Thus, by Rule R2, τv1,j is linked to Sv
1,k in G′, a

contradiction.

Case 2. i > 1. Let τvp be a task such that τvp ∈ pred(τvi). Since τvi,j is linked to Sv
i,k in G, by Rule R2,

τvi,j is released at or before time t in G. Thus, τvp,j is complete at time t in G. Let Sv
p,x be the server job

to which τvp,j is linked in G. By the definition of time t, τvp,j is linked to a server job Sv
p,y in G′ such that

y ≤ x holds. By Claim 4.9, τvp,j finishes execution in G′ at or before it finishes execution in G. Thus, τvi,j

is released in G′ at or before its release time in G. Let tr and t′r be the release times of τvi,j in G and G′,

respectively. By Rule R2, tr ≤ r(Sv
i,k) = t holds. Thus, we have t′r ≤ tr ≤ t. Since τvi,j is linked to

Sv
i,k in G, by Rule R2, τvi,j−1 (if any) is already linked to a server job at time t in G. By the definition of

time t, τvi,j−1 (if any) is linked to a server job at time t in G′. Thus, by Rule R2, τvi,j is linked to Sv
i,k in G′,

a contradiction.

The theorem follows from Claims 4.9 and 4.10.

Slack reallocation. The response times of DAG tasks may potentially be improved by utilizing budgets of

server jobs that have no linked job. Assuming Sv
i,j is scheduled at time t, we propose the following slack

reallocation policy.

Q1. If Sv
i,j has no linked job or its linked job completes at or before time t, then the highest priority ready

but unscheduled job of τvi is scheduled on Sv
i,j at time t.

When each P v
i equals 1, the bounds in Theorem 4.2 are also exact with slack reallocation. This is because the

allocation received by each server over any H-sized interval is at most HUtot, as shown in Chapter 3, which

translates to a similar task-level property.

Asynchronous releases. Instead of synchronous server releases, asynchronous server releases are possible.

We chose to limit attention to the former for simplicity (e.g., asynchronous releases would necessitate different

ideal schedules for tasks and servers).

140

4.5 Experimental Evaluation

We now present the results of simulation experiments we conducted to evaluate the response-time bounds

of our proposed scheduler. We compared our scheduler to other schedulers that provide bounded response

times without utilization loss.

We generated task systems randomly for systems with 2 to 24 processors with a step size of 2.0. Such

processor counts are common in real-world use cases [Akesson et al., 2022; Kato et al., 2018]. For each

processor count, we generated task systems that have normalized utilization, i.e., Utot/M , from 0.5 to 1

with a step size of 0.1. Each task system consists of one or more DAGs. The number of DAGs was chosen

uniformly from [1, ⌊Utot/2⌋]. Motivated by automotive use cases, each DAG’s period was uniformly selected

from {1, 2, 5, 10, 20, 50, 100, 200}ms [Kramer et al., 2015]. The offset of each DAG was uniformly selected

between 0 and its period. The number of nodes per DAG was chosen uniformly from [10, 100). Each

node’s utilization was chosen uniformly following procedures from [Emberson et al., 2010]. The WCET

of each node was rounded to the nearest microsecond. Edges were generated following the Erdős-Rényi

method [Cordeiro et al., 2010], where an edge was added between two nodes if a uniformly generated

number in [0, 1] is at most a predefined edge-generation probability. We selected this probability value from

{0.1, 0.3, 0.5, 0.7, 0.9}. As in [Saifullah et al., 2014], a minimum number of additional edges was added to

make each DAG weakly connected. Each edge was directed from a lower-indexed task to a higher-indexed

task. For each combination of processor count, normalized utilization, and edge-generation probabilities, we

generated 1,000 random task systems.

We considered three scenarios for each generated task system depending on task parallelism levels. In

scenarios No and Unr, each task’s parallelism level was set to 1 and M , respectively. In scenario Rnd, task

parallelism levels were generated uniformly between 1 andM . For scenarios No, Unr, and Rnd, we compared

our response-time bounds with those from [Liu and Anderson, 2010], [Yang et al., 2016], and [Amert et al.,

2019], respectively. Recall from Chapter 2 that these works convert each DAG task into an “equivalent”

independent sporadic task set and schedule the converted tasks by G-EDF. The response-time bounds from

these prior works are non-exact and can be computed in polynomial time. For each scenario, we computed

the average and maximum bound ratio, which is the ratio of the average and maximum response-time bound

of our method to those of the corresponding prior method (so ratios below 1.0 show improvement by our

method). These ratios are plotted in Figures 4.5 and 4.6.

141

0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Bo
un

d
Ra

tio

No
Unr
Rnd

(a) Average bound ratio vs. normalized utilization.

2 4 6 8 10 12 14 16 18 20 22 24
Processor Count

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Av
er

ag
e

Bo
un

d
Ra

tio

No
Unr
Rnd

(b) Average bound ratio vs. processor count.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700

Av
er

ag
e

Bo
un

d
Ra

tio

No
Unr
Rnd

(c) Average bound ratio vs. edge-generation probability.

Figure 4.5: Averate bound ratios.

Observation 4.1. For No, Rnd, and Unr, the average improvement of our bound over prior methods was

around 43%, 48%, and 31%, respectively.

142

0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ax

im
um

 B
ou

nd
 R

at
io No

Unr
Rnd

(a) Maximum bound ratio vs. normalized utilization.

2 4 6 8 10 12 14 16 18 20 22 24
Processor Count

0.4

0.6

0.8

1.0

1.2

M
ax

im
um

 B
ou

nd
 R

at
io No

Unr
Rnd

(b) Maximum bound ratio vs. processor count.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

0.45
0.50
0.55
0.60
0.65
0.70
0.75

M
ax

im
um

 B
ou

nd
 R

at
io

No
Unr
Rnd

(c) Maximum bound ratio vs. edge-generation probability.

Figure 4.6: Maximum bound ratios.

The improvement is due to the pessimism inherent to prior bounds. Prior bounds that consider arbitrary

parallelism levels suffer from pessimism present in the analysis of both no and unrestricted parallelism. This

143

yields a larger improvement for the Rnd scenario. The improvement is less for Unr as prior analysis with

unrestricted parallelism is less pessimistic. Note that asynchronous server releases, as discussed earlier, may

yield additional improvement.

Observation 4.2. Our method provided a larger improvement with increasing (resp., decreasing) normalized

utilization (resp., edge-generation probabilities). Except No, our method provided larger improvement as the

processor count increases.

This can be seen in Figure 4.5(a)–(c). The large improvement for higher normalized utilizations or

processor counts is due to the increased pessimism in the corresponding prior analysis. For scenario No,

the large improvement for small processor counts is due to the usage of slack reallocation. In contrast, for

scenario Unr and small processor counts, the prior method gave smaller bounds. This happens because

prior analysis is reasonably tight under the corresponding scheduling policy for small processor counts,

while jobs may be delayed waiting for their linked server jobs in our scheduling strategy. With increasing

edge-generation probabilities, DAGs become more sequential, which limits improvement under our method.

To determine the tightness of the simulation length, we computed the analytical simulation length from

Theorem 4.2 and the actual simulation length by checking when the condition given in Lemma 4.51 is met

for the first time. The observation below indicates that the analytical simulation length is pessimistic.

Observation 4.3. The average analytical simulation length (from Theorem 4.2) is 3,564,060 times larger

than the average actual simulation length.

Figure 4.7 presents average simulation lengths in number of hyperperiods with respect to normalized

utilizations, processor count, and edge-generation probabilities. Simulation lengths in Unr were around

three times larger than No and Rnd. Unsurprisingly, simulation lengths were larger for large normalized

utilizations, processor count, and edge-generation probabilities for all Unr, No, and Rnd.

Similar to simulation lengths, simulation time in Unr were larger than No and Rnd. However, across

all generated task systems, our method found exact response times within reasonable time. Note that the

execution time of our method depends on the hyperperiod and the granularity of time units.

Observation 4.4. The average (resp., maximum) simulation time (on a 24-core 2.50 GHz machine) was 6.83s

(resp., 10872.81s). The average (resp., maximum) time to compute prior bounds was 0.10s (resp., 9.71s).

144

0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization

0
1
2
3
4
5
6
7

Av
er

ag
e

Si
m

ul
at

io
n

Le
ng

th
 (N

um
be

r o
f H

yp
er

pe
rio

ds
) 1e6

No
Unr
Rnd

(a) Simulation-interval length vs. normalized utilization.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Processor Count

0
1
2
3
4
5
6
7

Av
er

ag
e

Si
m

ul
at

io
n

Le
ng

th
 (N

um
be

r o
f H

yp
er

pe
rio

ds
) 1e6

No
Unr
Rnd

(b) Simulation-interval length vs. processor count.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

0

1

2

3

4

5

Av
er

ag
e

Si
m

ul
at

io
n

 L
en

gt
h

(s
ec

)

1e6
No
Unr
Rnd

(c) Simulation-interval length vs. edge-generation probability.

Figure 4.7: Simulation-interval length.

4.6 Chapter Summary

In this chapter, we presented a server-based scheduling policy for DAG tasks. We showed that server-

based scheduling policy is SRT-optimal for scheduling DAG tasks under the rp model. We also gave a method

145

0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e

Ru
nn

in
g

Ti
m

e
(s

ec
)

No
Unr
Rnd

(a) Running time vs. normalized utilization.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Processor Count

0

5

10

15

20

25

30

Av
er

ag
e

Ru
nn

in
g

Ti
m

e
(s

ec
)

No
Unr
Rnd

(b) Running time vs. processor count.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

4
6
8

10
12
14
16
18

Av
er

ag
e

Ru
nn

in
g

Ti
m

e
(s

ec
)

No
Unr
Rnd

(c) Running time vs. edge-generation probability.

Figure 4.8: Simulation execution times.

to compute exact response-time bounds under this policy. Moreover, our method takes pseudo-polynomial

time for pseudo-harmonic DAG tasks.

146

CHAPTER 5: SUSPENSION-BASED MULTIPROCESSOR LOCKING PROTOCOLS1

In this chapter, we consider systems with non-CPU shared resources. Recall from Section 2.3 that

asymptotically optimal suspension-based locking protocols for mutual exclusion (mutex) sharing have a

factor of two in their pi-blocking bounds, while the best-known lower-bound result lacks this factor. In this

chapter, we show that the factor of two is fundamental for a class of global JLFP schedulers that contains

G-EDF and G-FP but not G-FIFO. For C-FIFO (thus, also G-FIFO and P-FIFO) scheduling, we show the

opposite by devising a locking protocol that does not have the factor of two in its pi-blocking bound. We also

give an optimal locking protocol for k-exclusion sharing and a nearly optimal one for reader-writer sharing

under C-FIFO scheduling.

Organization. In the rest of the chapter, we first describe our system model (Section 5.1), then give lower-

bound results for non-FIFO global JLFP schedulers (Section 5.2), present optimal locking protocols for

FIFO schedulers (Section 5.3), present evaluation results (Section 5.4), and provide a summary (Section 5.5).

5.1 System Model

In this section, we describe the considered system model. Table 5.1 summarizes the notation given here.

Task model. We consider a system Γ of N sporadic tasks τ1, τ2, . . . , τN to be scheduled on M identical

processors. Each task τi releases a potentially infinite sequence of jobs τi,1, τi,2, (We omit job indices if

they are irrelevant.) Each task τi has a period Ti specifying the minimum spacing between consecutive job

releases. The maximum and minimum periods among all tasks are denoted by Tmax and Tmin, respectively.

Each task has a relative deadline Di. The minimum relative deadline among all tasks is denoted by Dmin.

Each task τi has a WCET denoted by Ci. Each task τi has a parallelization level Pi that specifies the number

1 Contents of this chapter previously appeared in preliminary form in the following papers:

Ahmed, S. and Anderson, J. (2023a), Optimal Multiprocessor Locking Protocols under FIFO Scheduling, Proceedings
of the 35th Euromicro Conference on Real-Time Systems, pages 16.1-16.21.

Ahmed, S. and Anderson, J. (2024), Open Problem Resolved: The ‘Two’ in Existing Multiprocessor PI-Blocking
Bounds is Fundamental, Proceedings of the 36th Euromicro Conference on Real-Time Systems, pages 11.1-11.21.

147

Table 5.1: Notation summary for Chapter 5.

Symbol Meaning

Γ Task system

N Number of tasks

M Number of processors

τi ith task

Ti Period of τi

Ci WCET of τi

Yi RPP of τi

ui Utilization of τi

Pi Parallelization level of τi

Tmin mini{Ti}

Φmax maxi{Φi}

Dmin mini{Di}

τi,j jth job of τi

r(τi,j) Release time of τi,j

f(τi,j) Completion time of τi,j

y(τi,j) PP of τi,j

nr Number of resources

ℓq qth resource

N q
i Maximum number of requests for ℓq by

τi

Lq
i Maximum request length for ℓq by τi

Lq
max max1≤i≤n{Lq

i }

Lmax max1≤q≤nr L
q
max

R A request

Lq
sum,h Definition 5.1

of successive jobs of τi that can execute in parallel. Task τi’s utilization is defined as ui = Ci/Ti. The release

time (resp., finish time) of a job τi,j is given by r(τi,j) (resp., f(τi,j)).

We consider clustered scheduling2 of jobs in Γ. Recall that clustered scheduling is a hybrid of partitioned

and global scheduling, where all M processors are partitioned into M/c ∈ N clusters (for simplicity, we

2The results presented in Section 5.2 apply only to global scheduling.

148

assume that M is divisible by c) each containing c processors.3 Each task is assigned to a cluster and can

migrate only among the processors of that cluster. Thus, both partitioned and global scheduling are special

cases (c = 1 and c =M , respectively).

Resource model. We consider a system that has a set {ℓ1, . . . , ℓnr} of shared resources. For now, we limit

attention to mutex sharing, although other notions of sharing will be considered later. Under mutex sharing, a

resource ℓq can be held by at most one job at any time. When a job τi,j requires a resource ℓq, it issues a

request R for ℓq. R is satisfied as soon as τi,j holds ℓq, and completes when τi,j releases ℓq (see Figure 2.6).

R is active from its issuance until its completion. Job τi,j is suspended untilR can be satisfied. We assume

that if a job τi,j holds a resource ℓq, then it must be scheduled to execute.4 A resource access is called a

critical section (CS).

We assume that each job can request or hold at most one resource at a time, i.e., resource requests are

non-nested. We letN q
i denote the maximum number of times a job of task τi requests ℓq, and let Lq

i denote the

maximum length of such a request. We define Lq
i as 0 if N q

i = 0. Finally, we define Lq
max = max1≤i≤n{Lq

i }

and Lmax = max1≤q≤nr{L
q
max}.

Definition 5.1. We define Lqi = [Lq
i , L

q
i , . . . , L

q
i] to be a list that contains Lq

i exactly Pi times, and define Lq

to contain all elements of Lq1,L
q
2, . . . ,L

q
N . Let Lq

sum,h be the sum of the (up to) h largest elements of Lq.◀

Example 5.1. Assume that three tasks τ1, τ2, and τ3 access a shared resource ℓq. Let P1 = 2, P2 =

3, and P3 = 1. By Definition 5.1, Lq1 = [Lq
1, L

q
1], L

q
2 = [Lq

2, L
q
2, L

q
2], and Lq3 = [Lq

3]. Thus, Lq =

[Lq
1, L

q
1, L

q
2, L

q
2, L

q
2, L

q
3]. Assume that Lq

1 > Lq
2 > Lq

3. Then, Lq
sum,2 = 2Lq

1 and Lq
sum,4 = 2Lq

1 + 2Lq
2. ◀

Eligible and ready jobs. We now provide a further refinement of jobs’ readiness when they share resources

and wait for an occupied resource by suspending.

Definition 5.2 (Eligible job). A job τi,j is eligible at time t in a schedule S if and only if it is pending (see

Definition 2.4) and j ≤ Pi or f(τi,j−Pi
) ≤ t hold. ◀

Definition 5.3 (Ready job). A job τi,j is ready at time t in a schedule S if and only if it is eligible but not

suspended. ◀

3Our results can be adapted for non-uniform cluster sizes at the expense of additional notation.
4As noted in Chapter 1, this is a common assumption in work on synchronization. It is needed for shared data, but may
be pessimistic for other shared resources such as I/O devices.

149

Note that the definition of eligible jobs matches the definition of ready jobs in prior chapters where no

suspension times were considered. We add the notion of eligibility to preserve the traditional semantics of

ready jobs.

Pi-blocking. In this chapter, we consider accounting for pi-blocking that can arise due to mutex sharing

under s-oblivious analysis. The formal definition of pi-blocking under s-oblivious analysis is given in

Definition 2.2. This definition assumes that tasks have constrained deadlines and they are scheduled by

a global scheduler. The refinement of the definition for clustered scheduling is trivial [Brandenburg and

Anderson, 2011]. However, when tasks have soft real-time constraints or have deadlines larger than periods,

further refinement is needed. This is to discount any self-dependency-related delays as s-oblivious pi-blocking

time. Note that, under s-oblivious schedulability analysis (as in Chapters 3 and 4), self-dependency-related

delays are explicitly handled but suspension times are not. We give the refined definition below.

Definition 5.4. Under s-oblivious schedulability analysis for clustered scheduling, a job τi,j incurs s-oblivious

pi-blocking at time t if and only if τi,j is eligible but not scheduled and fewer than c higher-priority jobs are

eligible in its cluster. ◀

Example 5.2. Figure 5.1 illustrates two consecutive jobs τi,j and τi,j+1 of a task τi with Ti = 7, Di = 11,

and Pi = 1 (no parallel execution of two jobs of a task is allowed). Assume that task τi is scheduled on a

cluster containing c > 1 processors. Job τi,j+1 is released at time 7 and job τi,j finishes execution at time 10.

Thus, job τi,j+1 is pending but not eligible during the time interval [7, 10). Assume that both τi,j and τi,j+1

are among the c highest-priority pending jobs in their cluster during [7, 10). However, since Pi = 1, τi,j+1 is

pending but not eligible during the interval [7, 10). Thus, it is not s-oblivious pi-blocked during that interval

according to Definition 5.4. In contrast, τi,j+1 is eligible during [12, 13). Assume that τi,j+1 is among the c

highest-priority eligible jobs during [12, 13), but is suspended. Then, by Definition 5.4, τi,j+1 is s-oblivious

pi-blocked during [12, 13). ◀

5.2 Lower-Bound Results for Non-FIFO Global JLFP Schedulers

In this section, we consider a class of global JLFP schedulers that contains G-EDF and G-FP schedulers

but not G-FIFO schedulers. Under such a class of schedulers, we improve the existing lower bound of M − 1

request lengths on per-request pi-blocking time [Brandenburg and Anderson, 2010a]. For the purpose of

150

Time

τi,j+1

τi,j

0 5 10 15

Release Deadline Completion Execution CS

Suspension Request Issuance Lock Release

Figure 5.1: A schedule illustrating s-oblivious pi-blocking for arbitrary-deadline HRT tasks. These jobs are
scheduled alongside jobs in other clusters that are not shown and cause lock-related suspensions.

deriving a lower bound, it is sufficient to assume that the system has only one mutex resource, i.e., nr = 1.

Since there is one mutex resource, we do not use any resource index in the rest of this section, e.g., the mutex

resource is denoted by ℓ. In the rest of the section, we first give a general lower bound of 2M − 2 request

lengths on per-request pi-blocking (Section 5.2.1). Then, we consider a subclass of locking protocols for

which the lower bound can be improved to a value that is one time unit smaller than 2M − 1 request lengths

(Section 5.2.2).

5.2.1 General Lower Bound on Pi-Blocking

In this section, we give a lower bound of 2M − 2 request lengths on pi-blocking under a class of GEL

schedulers that includes G-EDF and G-FP scheduling. Specifically, we demonstrate the existence of a task

system and a corresponding release sequence such that a job incurs pi-blocking for at least 2M − 2 request

lengths. In the rest of the section, we first describe said task system (Section 5.2.1.1). Next, we show how a

job in that system incurs pi-blocking for at least 2M − 2 request lengths assuming a certain assignment of

job priorities (Section 5.2.1.2). Finally, we show how that priority assignment can be realized under different

schedulers (Section 5.2.1.3).

5.2.1.1 Task System

Let Γ be a set of N tasks that are globally scheduled on M processors. Γ consists of M disjoint groups of

tasks. The first group of tasks consists of 2M − 2 tasks {τ11 , τ12 , . . . , τ12M−2}. Each of the remaining M − 1

groups of tasks consists of M tasks. We denote the set of tasks in the ith group (i > 1) by {τ i1, τ i2, . . . , τ iM}.

Thus, the total number of tasks is N = (2M − 2) + (M − 1)M =M2 +M − 2.

151

Each job of each task issues a request for resource ℓ as soon as the job is released. The request length of

each request is L. Each job completes as soon as its request for resource ℓ completes. Thus, Ci = L holds.

To establish our lower bound, we do not need any specific assignment of periods to the tasks in Γ, unless a

period assignment is required to assign job priorities (as in G-EDF for implicit-deadline HRT tasks). We will

show how periods can be assigned (if needed) in Section 5.2.1.3.

Feasibility of Γ. In the following lemma, we show that Γ can be feasibly scheduled under any JLFP scheduler

when the minimum period and the minimum deadline of all tasks are large enough. Intuitively, all jobs can be

scheduled sequentially yet meet deadlines.

Lemma 5.1. If Tmin ≥ NL and Dmin ≥ NL, then there exists a suspension-based locking protocol under

which Γ is HRT-schedulable under any JLFP scheduler.

Proof. We show that Γ is HRT-schedulable under any JLFP scheduler when lock requests are satisfied in

FIFO order. We do so by showing that, in such a case, each job completes within NL time units after its

release. Assume otherwise. Let τ be the job with the earliest release time, call it tr, which does not complete

execution within tr +NL. Since no job released before tr takes more than NL time units after its release to

complete and Tmin ≥ NL, there is at most one pending job per task at time tr. Thus, there are at most N

pending jobs (including τ) at time tr. Since requests are satisfied in FIFO order, τ’s request is complete by the

time these N requests are complete. Since JLFP scheduling is work-conserving, these N requests complete

by time tr +NL. Since each job finishes execution when its request completes, τ completes execution by

time tr +NL, reaching a contradiction. Since Dmin ≥ NL, each job meets its deadline.

Release sequence. We now describe a release sequence (i.e., instantiation) Γseq for tasks in Γ. Our lower-

bound proof only requires one job of each task. For ease of notation, we omit the job index and use τ ji to

denote both a task and its job. These jobs are released according to the following rules.

JR1. Jobs J 1 = {τ11 , τ12 , . . . , τ12M−2} are released at time 0.

JR2. Let ti be the time instant when the ith-satisfied request is complete. We define t0 = 0. At time tkM−1,

jobs J k+1 = {τk+1
1 , τk+1

2 , . . . , τk+1
M } are released.

JR3. No task releases a new job until all jobs in J 1 ∪ J 2 ∪ · · · ∪ JM complete execution.

152

Note that Rules JR1–JR3 do not require an unsatisfied request to be satisfied immediately after a request

completion. Thus, at time ti, a locking protocol may insert delays before satisfying the next request. Since

there is only one job per task (Rule JR3), no effect of parallelization levels of tasks can be observed for these

jobs. Therefore, by Definitions 2.4 and 5.2, any pending job is also eligible. Thus, to determine whether a job

is pi-blocked or not according to Definition 5.4, we will consider pending jobs.

Job priorities. We assume that job priorities satisfy the following rules. We will later illustrate how this

priority ordering can be achieved under different schedulers in Section 5.2.1.3.

PR1. For any v > w, job τvi has higher priority than job τwj , i.e., the jobs in J v have higher priorities than

the jobs in J w.

PR2. For any i > j, job τvi has higher priority than job τvj .

Example 5.3. Figure 5.2 depicts a release sequence according to Rules JR1–JR3 for M = 4. By Rule JR1,

jobs τ11 –τ16 are released at time 0. Since the (M − 1)st = 3rd satisfied request (τ13 ’s request) completes at

time 3, by Rule JR2, jobs τ21 –τ24 are released at time 3. Similarly, by Rule JR2, jobs τ31 –τ34 are released at

time 7, as the (2M − 1)st = 7th satisfied request (τ23 ’s request) completes then.

In Figure 5.2, the time intervals when a job experiences s-oblivious pi-blocking are marked red. For

example, during [0, 1), jobs τ16 , τ
1
4 , and τ13 suffer pi-blocking, as they are among the top M = 4 jobs by

priority during this time interval (by Rule PR2). In contrast, a job does not experience pi-blocking during

black-marked intervals. For example, jobs τ11 and τ12 are suspended but not pi-blocked during time interval

[0, 1). Note how their suspension time here is “negated” as pi-blocking time by the presence of M = 4

higher-priority jobs that are either executing or suspended. ◀

5.2.1.2 Lower-Bound Proof

In this section, we prove the following theorem.

Theorem 5.1. There is a job τ ji in Γseq that incurs pi-blocking for at least (2M − 2)L time units when job

priorities are determined by Rules PR1 and PR2.

To prove Theorem 5.1, our goal is to show that there exists a time instant when M − 1 jobs are pending

with unsatisfied requests, and each such job has already incurred pi-blocking of at least ML time units. If no

153

Time

τ11

τ12

τ13

τ14

τ15

τ16

τ21

τ22

τ23

τ24

τ31

τ32

τ33

τ34

τ41

τ42

τ43

τ44

0 5 10 15

J 1

J 2

J 3

J 4

CS

Suspension and pi-blocked

Suspension and not pi-blocked

Completion

Deadline

Release

pi-blocked for 2M − 2

request lengths

I(0, tM−1)

I(1, t2M−1)

I(2, t3M−1)

I(3, t4M−1)

Figure 5.2: Release sequence by Rules JR1–JR3 for M = 4. Job priorities increase from bottom to top.

higher-priority jobs are released at or after such a time instant, then at least one job must incur pi-blocking

for at least an additional (M − 2)L time units (as any locking protocol must impart some ordering of these

requests). To prove this, we show that an invariant holds at times tM−1, t2M−1, . . . , tM2−1. We first define

some notation.

154

Definition 5.5. Let B(x, t) denote the number of pending jobs at time t that have incurred pi-blocking of at

least xL time units by that time. ◀

Using B(x, t), we define the following predicate.

I(p, t) ≡
x=1,v=M+p−1∧

x=M,v=p

B(x, t) ≥ min{v,M − 1} (5.1)

Thus, I(p, t) is true if and only if B(M, t) ≥ min{p,M − 1} ∧B(M − 1, t) ≥ min{p+ 1,M − 1} ∧

· · · ∧B(1, t) ≥ min{M + p− 1,M − 1}. This means that, at time t, there exist min{p,M − 1} pending

jobs that have incurred at least ML time units of pi-blocking, min{p+ 1,M − 1} pending jobs that have

incurred at least (M − 1)L time units of pi-blocking, and so on.

Example 5.3 (Continued). Consider the schedule in Figure 5.2. At time 3, the only pending jobs that

were released previously (and thus could have been pi-blocked) are τ14 , τ12 , and τ11 . These jobs have

incurred pi-blocking for 3L, 2L, and L time units, respectively. Thus, there is (are) one (resp., two, three)

job(s) that has (have) incurred pi-blocking for 3L (resp., 2L, L) time units by time 3 (and none that

have experienced pi-blocking for 4L time units). Thus, B(4, 3) = 0, B(3, 3) = 1, B(2, 3) = 2, and

B(1, 3) = 3 hold. Hence, I(0, 3) holds. Similarly, by time 7, τ22 , τ12 , and τ11 , which were all released

previously and are still pending, have incurred pi-blocking for 4L, 4L, and 2L time units, respectively.

Thus, B(4, 7) = 2, as there are two pending jobs at time 7 that have incurred pi-blocking for at least

4L time units by time 7. Similarly, B(3, 7) = 2, B(2, 7) = 3, and B(1, 7) = 3 hold. Thus, we have

B(4, 7) ≥ min{1, 3}∧B(3, 7) ≥ min{2, 3}∧B(2, 7) ≥ min{3, 3}∧B(1, 7) ≥ min{4, 3}. Since M = 4,

by (5.1), I(1, 7) holds. ◀

To prove Theorem 5.1, our goal is to show that I(M − 1, t) holds at some time instant t in Γseq under

any suspension-based locking protocol. By (5.1), this would imply that B(M, t) ≥ (M − 1). Thus, there

exists a time instant when M − 1 pending jobs have already incurred ML time units of pi-blocking. In the

following lemma, we first show that there exists a time instant t when I(0, t) holds.

Lemma 5.2. I(0, tM−1) holds.

Proof. Time instant tM−1 = t3 in Figure 5.2 illustrates this lemma. By (5.1), we need to prove that

B(M, tM−1) ≥ 0 ∧ B(M − 1, tM−1) ≥ 1 ∧ · · · ∧ B(1, tM−1) ≥ M − 1 holds. Since no jobs in J 2 ∪

155

J 3 ∪ · · · ∪ JM are released before time tM−1, only jobs in J 1 can incur pi-blocking before time tM−1. By

Rule JR2, the first i satisfied requests and their corresponding jobs complete by time ti. Thus, at time tM−1,

there are 2M − 2− (M − 1) = M − 1 pending jobs of J 1. Let τhp(i) be the ith highest-priority pending

job among the jobs of J 1 at time tM−1. We prove the lemma by first establishing the following claim.

Claim 5.1. Job τhp(i) incurs pi-blocking for at least (M − i)L time units by time tM−1.

Proof. We first show that job τhp(i) is one of the M highest-priority pending jobs during [ti−1, tM−1).

Note that i ≤M − 1 (hence, i− 1 < M − 1) holds, as there are M − 1 pending jobs (including τhp(i)) of

J 1 at time tM−1. By the definition of τhp(i), among the M − 1 pending jobs of J 1 at time tM−1, exactly

M − 1− i jobs have lower priorities than τhp(i).

By Rules JR1 and JR2, no job is released during (0, tM−1). Thus, by the definition of time instant ti−1,

there are 2M − 2− (i− 1) = 2M − i− 1 pending jobs at time ti−1. Since τhp(i) has higher priority than

M − i− 1 jobs of J 1 at time tM−1, τhp(i) is among the 2M − i− 1− (M − i− 1) =M highest-priority

pending jobs at time ti−1. τhp(i) remains one of the M highest-priority pending jobs during [ti−1, tM−1),

as no jobs are released during [ti−1, tM−1).

During the time interval [ti−1, tM−1), the ith, (i+ 1)st, . . . , (M − 1)st satisfied requests are satisfied

and complete. Thus, tM−1 − ti−1 ≥ (M − 1 − i + 1)L = (M − i)L. Note that tM − ti−1 can be

greater than (M − i)L if a locking protocol inserts any delay between two consecutive satisfied requests.

Since τhp(i) is pending at time tM−1 and it is among the top-M jobs by priority during [ti−1, tM−1), it is

continuously pi-blocked during [ti−1, tM−1). Thus, τhp(i) incurs pi-blocking for at least (M − i)L time

units by time tM−1.

Continuing the proof of the lemma, we now show that, for any i < M , B(M − i, tM−1) ≥ i. Consider

the set of jobs {τhp(1), τhp(2), . . . , τhp(i)}. By Claim 5.1, each job in {τhp(1), τhp(2), . . . , τhp(i)} incurs at

least (M − i)L time units of pi-blocking by time tM−1. Thus, B(M − i, tM−1) ≥ i holds for each i < M .

Moreover, B(M, tM) ≥ 0 holds trivially. Thus, I(0, tM) =
∧x=1,v=M−1

x=M,v=0 B(x, tM−1) ≥ v holds.

In the following three lemmas, we show that each job that is pending but unscheduled during time

intervals [tkM−2, tkM−1) (for any 2 ≤ k ≤ M) incurs pi-blocking during this time interval. This allows

the system to steadily reach a time instant t when I(M − 1, t) holds. In Figure 5.2, the time intervals

156

[tkM−2, tkM−1) refer to time intervals [6, 7), [10, 11), and [14, 15). Note that, during each of these intervals,

exactly M = 4 jobs are pending.

Lemma 5.3. For any integer 2 ≤ k ≤M , there are M pending jobs during time interval [tkM−2, tkM−1).

Proof. By Rule JR1, 2M − 2 jobs are released at time 0. By Rule JR2, for each time instant tiM−1 with

1 ≤ i ≤M − 1, M jobs are released. By Rules JR1 and JR2, at or before time tkM−2, jobs are released only

at time instants 0, tM−1, t2M−1, . . . , t(k−1)M−1. Thus, the number of jobs that are released at or before time

tkM−2 is 2M − 2 + (k − 1)M = (k + 1)M − 2. By the definition of time instant tkM−2, the first kM − 2

satisfied requests are complete and these request-issuing jobs finish execution by time tkM−2. Thus, the

number of pending jobs at time tkM−2 is (k + 1)M − 2− kM + 2 = M . Since no job is released during

[tkM−2, tkM−1), the lemma follows.

Lemma 5.4. For any integer 2 ≤ k ≤ M − 1, there are M − 1 pending jobs of J 1 ∪ J 2 ∪ · · · ∪ J k at

time tkM−1.

Proof. By Rules JR1 and JR2, only jobs in J 1 ∪ J 2 ∪ · · · ∪ J k are released at or before time tkM−2. By

Lemma 5.3, there are M pending jobs during time interval [tkM−2, tkM−1). By the definition of time instants

tkM−2 and tkM−1, a request completes and the request-issuing job finishes execution at time tkM−1. Thus,

there are M − 1 pending jobs of J 1 ∪ J 2 ∪ · · · ∪ J k at time tkM−1.

Lemma 5.5. For any integer 2 ≤ k ≤M , all but one job that is pending at time tkM−2 incurs pi-blocking

throughout the time interval [tkM−2, tkM−1).

Proof. By Rule JR2, no jobs in J i with i > k are released at or before time tkM−2. By Lemma 5.3, there

are M pending jobs during the time interval [tkM−2, tkM−1). Among these M jobs, the job whose request

completes at time tkM−1 must be scheduled during [tkM−2, tkM−1). Thus, each of the remaining M − 1

pending jobs incurs pi-blocking throughout [tkM−2, tkM−1).

Using Lemma 5.5, we now prove the following lemma. Informally, since M − 1 jobs incur pi-blocking

during time interval [tkM−2, tkM−1), the number of pending jobs at time tkM−1 that have already incurred at

least L units of pi-blocking is at least M − 1.

Lemma 5.6. For any integer 2 ≤ k ≤M , B(1, tkM−1) ≥M − 1.

157

Proof. By Lemma 5.3, there are M pending jobs during [tkM−2, tkM−1). By Lemma 5.5, M − 1 jobs

among theseM pending jobs incur pi-blocking throughout [tkM−2, tkM−1). By the definition of time instants

ti, tkM−1 − tkM−2 ≥ L. Thus, there are at least M − 1 pending jobs at time tkM−1 that have incurred

pi-blocking for the duration of at least L time units, and the lemma follows.

We now show that there exist time instants t such that I(k, t) holds for each k ≤M − 1. In Figure 5.2,

these time instants are times 3, 7, 11, and 15 when I(0, 3), I(1, 7), I(2, 11), and I(3, 15) hold, respectively.

Specifically, we show that if I(k − 2, t(k−1)M−1) holds, then I(k − 1, tkM−1) will also hold.

Lemma 5.7. For any integer 1 ≤ k ≤M , I(k − 1, tkM−1) holds.

Proof. We use Figure 5.3 to illustrate the proof. By Lemma 5.2, I(0, tM−1) holds. We thus prove the lemma

for k ≥ 2. Assume for a contradiction that p ≥ 2 is the smallest integer for which I(p− 1, tpM−1) does not

hold. Thus, by the definition of p, we have

I(p− 2, t(p−1)M−1) ∧ ¬I(p− 1, tpM−1). (5.2)

Since ¬I(p− 1, tpM−1) holds, by (5.1), we have

x=1,v=M+p−2∨
x=M,v=p−1

B(x, tpM−1) < min{v,M − 1}. (5.3)

Note that the index x decreases from M to 1 in (5.3). Assume that M − q (with 0 ≤ q ≤ M − 1) is

the largest index x in (5.3) such that B(x, tpM−1) < min{v,M − 1} holds. In (5.3), the index v equals

p− 1 when x equals M , and v increases as x decreases. Thus, when x = M − q, we have v = p− 1 + q.

Therefore,

B(M − q, tpM−1) < min{p− 1 + q,M − 1}. (5.4)

To reach a contradiction, we will show that (5.4) cannot hold by considering the requests that are satisfied

during [t(p−1)M−1, tpM−1). By Rule JR2, M jobs of J p are released at time t(p−1)M−1 (see Figure 5.3). By

Lemma 5.3, there are M pending jobs of J 1 ∪ J 2 ∪ · · · ∪ J p−1 during [t(p−1)M−2, t(p−1)M−1). By the

definition of time instant t(p−1)M−1, one of these M pending jobs during [t(p−1)M−2, t(p−1)M−1) completes

at time t(p−1)M−1. Thus, at time t(p−1)M−1, there areM−1 pending jobs of J 1∪J 2∪· · ·∪J p−1. Let Jold

158

Timet(p−1)M−1 tpM−2 tpM−1

Jold
{(M − 1) jobs}

J ′
old

{B(M − q −
1, t(p−1)M−1)

jobs}

J p

{M jobs}
x jobs in J p

pending

≥ML
pi-blocking
(Claim 5.2)

z jobs in J ′
old

pending

Additional ≥ L
pi-blocking
(Claim 5.3)

Release Completion CS Suspension and pi-blocked

Figure 5.3: Illustration of the proof of Lemma 5.7.

be the set of these M − 1 jobs of J 1 ∪J 2 ∪ · · · ∪ J p−1 that are pending at time t(p−1)M−1 (see Figure 5.3).

We now consider two cases depending on the value of M − q.

Case 1. M−q = 1. Replacing q =M−1 in (5.4), we haveB(1, tpM−1) < min{p−1+M−1,M−1}.

Since p ≥ 2, we have p−1+M−1 ≥ 2−1+M−1 =M . Thus,B(1, tpM−1) < min{M,M−1} =M−1,

contradicting Lemma 5.6.

Case 2. M − q > 1. Thus, M − q− 1 ≥ 1 holds. By Definition 5.5, there are B(M − q− 1, t(p−1)M−1)

pending jobs at time t(p−1)M−1 that have incurred pi-blocking for the duration of (M − q − 1)L ≥ L time

units. Thus, each of these B(M − q − 1, t(p−1)M−1) jobs is from Jold, as they must be released before time

t(p−1)M−1. Let J ′
old ⊆ Jold be these B(M − q − 1, t(p−1)M−1) jobs (see Figure 5.3).

We now lower bound the number of jobs in J p ∪ J ′
old. Since J p and J ′

old are disjoint, we have

|J p| + |J ′
old| = M + B(M − q − 1, t(p−1)M−1). Thus, to lower bound |J p| + |J ′

old|, we derive a lower

bound on B(M − q− 1, t(p−1)M−1) using I(p− 2, t(p−1)M−1) (which holds by (5.2)). Since M − q− 1 ≥ 1

and I(p− 2, t(p−1)M−1) hold, by (5.1), we have B(M − q − 1, t(p−1)M−1) ≥ min{p− 2 + q + 1,M − 1}.

159

Using this lower bound on B(M − q − 1, t(p−1)M−1), we get

|J p|+ |J ′
old| =M +B(M − q − 1, t(p−1)M−1) ≥M +min{p+ q − 1,M − 1}. (5.5)

By Lemma 5.4, there are M − 1 pending jobs of J 1 ∪ J 2 ∪ · · · ∪ J p at time tpM−1. Thus, M − 1 jobs

in Jold ∪ J p are pending at time tpM−1. Assume that, at time tpM−1, among these M − 1 pending jobs

of Jold ∪ J p, x jobs are from J p, z jobs are from J ′
old, and the remaining M − 1 − x − z jobs are from

Jold \ J ′
old (see Figure 5.3). Thus, |J p| − x jobs from J p, and |J ′

old| − z jobs from J ′
old complete execution

by time tpM−1. Since (by Rule JR2) a total of M jobs complete execution during [t(p−1)M−1, tpM−1), we

have

|J p| − x+ |J ′
old| − z ≤M,

which implies

x+ z ≥ |J p|+ |J ′
old| −M

≥ {By (5.5)}

M +min{p+ q − 1,M − 1} −M

= min{p+ q − 1,M − 1}. (5.6)

We now show that these x + z pending jobs of J p ∪ J ′
old incur at least (M − q)L time units of pi-

blocking by time tpM−1. By Definition 5.5 and (5.6), this implies that B(M − q, tpM−1) ≥ x + z ≥

min{p+ q − 1,M − 1}, contradicting (5.4). The following two claims help to establish this.

Claim 5.2. Each of the x jobs of J p that are pending at time tpM−1 incurs pi-blocking for at least ML time

units by time tpM−1.

Proof. Let τ be one of the x jobs of J p that are pending at time tpM−1. Since J ∈ J p and Jold ⊆

(J 1∪J 2∪· · ·∪J (p−1)), by Rule PR1, τ has higher priority than each job inJold. Since only jobs inJ p∪Jold

are pending during [t(p−1)M−1, tpM−1) and |J p| =M (by Rule JR2), τ is among the top-M pending jobs by

priority throughout [t(p−1)M−1, tpM−1). Thus, τ incurs pi-blocking throughout [t(p−1)M−1, tpM−1). During

[t(p−1)M−1, tpM−1), M requests complete execution. Thus, τ incurs pi-blocking for at least ML time

units.

160

Claim 5.3. Each of the z jobs of J ′
old that are pending at time tpM−1 incurs pi-blocking for at least L time

units during time interval [t(p−1)M−1, tpM−1).

Proof. By Lemma 5.5, each of the z jobs of J ′
old that are pending at time tpM−1 incurs pi-blocking throughout

the time interval [tpM−2, tpM−1). By the definition of ti, tpM−1 − tpM−2 ≥ L. Thus, the claim holds.

By the definition ofJ ′
old, each of the z pending jobs ofJ ′

old has incurred at least (M−q−1)L time units of

pi-blocking by time t(p−1)M−1. By Claim 5.3, each such job incurs pi-blocking for at least L time units during

[t(p−1)M−1, tpM−1). Thus, these z jobs incur pi-blocking for at least (M −q)L time units by time tpM−1. By

Claim 5.2, each of the x jobs of J p that are pending at time tpM−1 incurs at leastML ≥ (M−q)L time units

of pi-blocking by time tpM−1. Thus, at time tpM−1, there are x+z pending jobs that have incurred pi-blocking

for at least (M − q)L time units. Therefore, by (5.6), B(M − q, tpM−1) ≥ x+ z ≥ min{p+ q− 1,M − 1},

contradicting (5.4).

Thus, in both cases, the lemma holds.

We now prove Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.7, I(M − 1, tM2−1) holds. Thus, by (5.1), at time tM2−1, there are

M − 1 pending jobs that have incurred pi-blocking for at least ML time units. By Lemma 5.4, there are

M −1 pending jobs of J 1∪J 2∪ · · ·∪JM at time tM2−1. By Rule JR3, no new job is released before these

M − 1 jobs are complete. Thus, each of these pending jobs incurs pi-blocking until its request is satisfied.

Since any locking protocol must satisfy these M − 1 pending jobs’ requests in some order, the job whose

request is satisfied last incurs at least an additional (M − 2)L time units of pi-blocking. Therefore, there

exists a job that incurs pi-blocking for at least ML + (M − 2)L = (2M − 2)L time units.

5.2.1.3 Job Priority Assignment

In this section, we show how the lower-bound proof in Section 5.2.1.2 applies under different schedulers.

We do so by showing how jobs can be assigned priorities under these schedulers so that Rules PR1 and PR2

hold.

G-FP schedulers. The following theorem shows that the lower-bound proof in Section 5.2.1.2 applies to any

G-FP scheduler.

161

Theorem 5.2. A job in Γseq incurs pi-blocking for at least (2M − 2) request lengths under any G-FP

scheduler.

Proof. Consider a G-FP scheduler F . We re-index the tasks in Γ based on the task priority assignment under

F . For each v > w, τvi has higher priority than τwj . Also, for each i > j, τvi has higher priority than τvj .

Thus, job priorities under F satisfy Rules PR1 and PR2. The theorem follows from Theorem 5.1.

GEL schedulers. We now show that the lower-bound proof in Section 5.2.1.2 also applies under a class

of GEL schedulers. Recall from previous chapters that, under GEL scheduling, each task τvi has a relative

priority point (RPP) Y v
i . A job τvi ’s priority point (PP) is defined as

y(τvi) = r(τvi) + Y v
i . (5.7)

We show that the lower-bound proof in Section 5.2.1.2 applies under GEL schedulers that assign RPPs

to tasks in Γ satisfying the following constraints.

∀τvM : 2 ≤ v ≤M − 1 :: Y v
M > Y v+1

1 + (2M − 2)L (5.8)

∀τvi : 2 ≤ v ≤M − 1 ∧ 1 ≤ i ≤M − 1 :: Y v
i > Y v

i+1 (5.9)

Y 1
2M−2 > Y 2

1 + (2M − 2)L (5.10)

∀τ1i : 1 ≤ i ≤ 2M − 3 :: Y 1
i > Y 1

i+1 (5.11)

Theorem 5.3. A job in Γseq incurs pi-blocking for at least (2M−2) request lengths under any GEL scheduler

that satisfies (5.8)–(5.11).

Proof. Assume that each job in Γseq incurs pi-blocking for less than (2M − 2)L time units under a GEL

scheduler satisfying (5.8)–(5.11). We first prove the following claim.

Claim 5.4. For i ≥ 0, ti+1 − ti < (2M − 2)L.

Proof. By the definitions of ti+1 and ti, a request is satisfied and complete during time interval [ti, ti+1).

If ti+1 − ti ≥ (2M − 2)L holds, then a pending job during time interval [ti, ti+1) incurs pi-blocking for at

least (2M − 2)L time units, a contradiction.

162

Using Claim 5.4, we show that the jobs in Γseq satisfy Rules PR1 and PR2. We first show that PR2 holds. We

consider two jobs τvi and τwj , and show that they satisfy Rules PR1 and PR2.

Case 1. Both τvi and τwj are from the same group, i.e., v = w. Without loss of generality, assume that i > j.

By (5.7) and Rules JR1 and JR2 (both jobs are released concurrently), we have y(τvi) = r(τvi) + Y v
i =

r(τvj) + Y v
i . Since i > j holds, by (5.9) and (5.11), we have Y v

i < Y v
j . Thus, y(τvi) < r(τvj) + Y v

j = yvj .

Thus, τvi has an earlier PP (hence, higher priority) than τvj , satisfying PR2.

Case 2: Both τvi and τwj are from different group, i.e., v ̸= w. Without loss of generality, assume that w > v.

We first consider the sub-case 2 ≤ v ≤M − 1. By (5.7), we have

y(τwj) = r(τwj) + Y w
j

≤ {By Rule JR2 and w > v, jobs in J w are released no earlier than J v+1}

r(τv+1
j) + Y w

j

= {By Rule JR2}

tvM−1 + Y w
j

= tvM−1 − t(v−1)M−1 + t(v−1)M−1 + Y w
j

< {By Claim 5.4}

(2M − 2)L + t(v−1)M−1 + Y w
j

< {By Rule JR2 and (5.9)}

(2M − 2)L + r(τvi) + Y w
1

< {By (5.8)}

(2M − 2)L + r(τvi) + Y v
M − (2M − 2)L

< {By (5.9)}

r(τvi) + Y v
i

= {By (5.7)}

y(τvi).

163

Thus, job τwj has an earlier PP (hence, higher priority) than job τvi where 2 ≤ v ≤M − 1. Similarly, using

(5.10) and (5.11) in the above calculation, we can show that τwj with w > 1 has higher priority than τ1i . Thus,

both Rules PR1 and PR2 are satisfied. Therefore, By Theorem 5.1, there is a job that is pi-blocked for at least

(2M − 2) request lengths, a contradiction.

For G-EDF scheduling of arbitrary-deadline tasks, the lower-bound result holds by assigning task

deadlines following constraints in (5.8)–(5.11) and ensuring that Dmin ≥ NL (to satisfy Lemma 5.1). The

lower-bound result holds even for constrained-deadline systems by considering systems with sufficiently

large periods and deadlines satisfying (5.8)–(5.11). Finally, the following corollary shows that the bound

holds for implicit-deadline systems too.

Corollary 5.1. A job in Γseq incurs pi-blocking for at least (2M−2) request lengths under G-EDF scheduling

when tasks have implicit deadlines.

Proof. We let TM
M ≥ (M2 +M − 2)L = NL. We assign periods to each task so that the constraints

(5.8)–(5.11) are satisfied. Note that TM
M = Tmin holds. Thus, by Lemma 5.1, Γ is feasible. Since Y u

i = T u
i

holds under G-EDF, by Theorem 5.3, the corollary holds.

The case of G-FIFO scheduling. Our lower-bound proof heavily relies on being able to release M jobs that

have higher priorities than any earlier-released jobs (Rule JR2 and PR1). The proof does not apply to any

scheduler that prevents higher-priority job releases. G-FIFO, which is a GEL scheduler, is one such example

as it prioritizes jobs by their release times (a future job cannot have an earlier release time).

Request vs. release blocking. Recall from Section 2.3 that a job may experience both release blocking and

request blocking under a locking protocol. Also, recall from Table 2.4 that the C-OMLP achieves a per-job

pi-blocking bound of (2M −1)L time units through a combination of a request-blocking bound of (M −1)L

time units and a release-blocking bound of ML time units. By the construction of Γ and Γseq, it may appear

that the lower bound of (2M − 2)L time units of pi-blocking applies only for request blocking (as each job

issues a request as soon as it is released), contradicting the C-OMLP’s request-blocking bound. However,

our bound actually applies for the total per-job pi-blocking (the sum of request and release blocking). A

locking protocol like the C-OMLP may choose to decompose the worst-case per-job pi-blocking of (2M −2)

request lengths into separate release blocking and request blocking terms.

164

5.2.2 Improved Lower Bound Under An Additional Assumption

In this section, we improve the lower bound established in Section 5.2.1 for a class of locking protocols

that satisfy a certain property. We begin by introducing some terms that we use to define this class of locking

protocols.

Definition 5.6. Consider a job τ that issues a requestR at time ta(R) that is satisfied at time ts(R). Define

th(R) as follows: if τ ever becomes one of the M highest-priority pending jobs in [ta(R), ts(R)), then let

th(R) denote the first such time; otherwise, let th(R) =∞. ◀

Using the above definition, we define reorder-bounded locking protocols.

Definition 5.7. Let τi and τj be two jobs that issue request Ri and Rj , respectively. A reorder-bounded

locking protocol decides the order in whichRi andRj are satisfied (relative to each other) no later than time

max{th(Ri), th(Rj)}. ◀

In the rest of this section, we limit attention to locking protocols that are reorder-bounded. We now show

that there exists a task system and a corresponding release sequence such that the pi-blocking incurred by a

job can be one unit smaller than (2M − 1) request lengths. We organize the proof in a similar structure as in

Section 5.2.1.

5.2.2.1 Task System

Let Γ = {τ1, τ2, · · · , τN} be a set of N tasks that are scheduled on M processors. Each job of each task

issues a request of length L for a resource ℓ as soon as it is released. We assume L ≥ 2. Each job completes

as soon as its request for resource ℓ completes. Thus, Ci = L. We assume that N = (2M − 1)+ (2M − 1)L.

Below, we show that Γ is HRT-schedulable under any JLFP scheduler when the minimum period Tmin and

relative deadlines are large enough. Intuitively, for sufficiently large task periods and deadlines, all jobs can

execute sequentially yet meet deadlines.

Lemma 5.8. If Tmin ≥ NL and Dmin ≥ NL, then there exists a suspension-based locking protocol under

which Γ is HRT-schedulable under any JLFP scheduler.

Proof. Similar to Lemma 5.1.

165

Release sequence for Γ. We now give a release sequence Γseq for Γ. We only give the release time for one

job of each task τi. For notational convenience, we also denote the job by τi. We denote job τi’s request

byRi. These jobs are released according to the following rules. (An example release sequence is given in

Figure 5.4, which we cover in detail below.)

SR1. Jobs {τ1, τ2, · · · , τM} are released at time 0. Without loss of generality, assume that, R1 is the last

satisfied request among {R1,R2, · · · ,RM}.

SR2. Let tk be the time instant when the kth-satisfied request is satisfied. Job τM+k is released at time tk +1

if one of the following conditions is met.

SR2.1. k = 1 holds.

SR2.2. 1 < k ≤ N −M holds andRM+k−1 is ordered (hence, satisfied) beforeR1.

SR3. Let h = min{N −M −k,M −1}. Jobs {τM+k+1, τM+k+2, · · · , τM+k+h} are released at time tk+1

ifRM+k is ordered (hence, satisfied) afterR1.

SR4. If some jobs are released by Rule SR3, then no task releases a new job until all jobs released by

Rule SR3 complete execution.

Note that Rules SR2 and SR3 require that, when a job τi with i > M is released, the order in which the

prior job τi−1’s request will be satisfied with respect to R1 is known. In Lemma 5.10, we will show that

this ordering has already been finalized when τi−1 is released under any reorder-bounded locking protocol.

Finally, when a job τM+k is released whose request is ordered after R1, h new jobs are instantaneously

released at the same time by Rule SR3. For simplicity, we assume such instantaneous releases are possible.

This assumption can be removed by delaying the release of the h new jobs by a time unit.

Job priorities. We assume job priorities satisfy the following rule. In Section 5.2.2.3, we will describe

how such priorities can be assigned under different schedulers.

QR. For any i > j, job τi has higher priority than job τj .

Example 5.4. Figure 5.4 depicts a release sequence according to Rules SR1–SR4 for M = 4 and L = 3.

By Rule SR1, jobs τ1–τ4 are released at time 0. At time 0, τ2’s request is satisfied. Thus, t1 = 0 holds. At

166

Time

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

τ10

0 5 10 15 20 25 30

Release Completion CS Suspension and not pi-blocked Suspension and pi-blocked

pi-blocked for
(2M − 1)L− 1

time units

Ordered afterR1

Ordered before
R1

Figure 5.4: Release sequence by Rules SR1–SR4 for M = 4 and L = 3.

time t1 + 1 = 1, by Rule SR2, job τM+1 = τ5 is released. t2 = 3 holds because the second request to be

satisfied (τ4’s request) is satisfied at time 3. Assuming τ5’s request is ordered beforeR1, by Rule SR2, τ6 is

released at time t2+1 = 4. At time 7, τ7 is released. Job τ7’s request is ordered afterR1. Thus, by Rule SR3,

τ8–τ10 are released at time 7.

In Figure 5.4, the time intervals when a job experiences s-oblivious pi-blocking are marked red. During

time interval [0, 1), τ1 is one of the top M = 4 jobs by priority. Thus, it experiences pi-blocking during this

interval. However, due to the release of τ5 and Rule QR, τ1 is not one of the top M = 4 jobs by priority

during time interval [2, 3). Thus, it does not experience pi-blocking during this interval. ◀

5.2.2.2 Lower-Bound Proof

In this section, we prove the following theorem.

167

Theorem 5.4. Under a reorder-bounded locking protocol, there exists a job in Γseq that incurs pi-blocking

for at least (2M − 1)L − 1 time units when job priorities satisfy Rule QR.

We prove Theorem 5.4 using the following two lemmas.

Lemma 5.9. If no job is released by Rule SR3 at or before time ti where 1 ≤ i ≤ N −M + 1, then there are

M pending jobs at time ti.

Proof. We first determine the number of jobs released at or before time ti. By Rule SR1, M jobs are released

at time 0. By Rule SR2, only job τM+k−1 is released during [tk−1, tk) for all 2 ≤ k ≤ i. Note that τM+k−1

is valid because M +k−1 ≤M + i−1 ≤M +N −M +1−1 = N . Thus, the number of jobs released by

time ti is M + i− 1. By the definition of ti (Rule SR2), the ith-satisfied request is satisfied but not complete

at time ti. Thus, exactly i− 1 jobs complete execution by time ti. Therefore, the number of pending jobs at

time ti is M + i− 1− (i− 1) =M .

Lemma 5.10. The relative order in which each request Ri (with i > 1) is satisfied with respect to R1 is

determined whenRi is issued.

Proof. By Rule SR1, each request Ri with 1 ≤ i ≤ M is issued at time 0 when τi is one of the top-M

jobs by priority. Thus, th(Ri) = ta(Ri) = 0 ≥ ta(R1) for each 1 ≤ i ≤ M . By Rule QR, job τi has

higher priority than any job τj with j < i. By Rules SR2 and SR3, at most M jobs are released at any time.

Thus, for any job τi with i > M , th(Ri) = ta(Ri) > 0 = ta(R1) = th(R1) holds. Therefore, for any i,

ta(Ri) = max{th(Ri), th(R1)}. By Definition 5.7, the relative order in whichRi is satisfied with respect

toR1 is determined at time ta(Ri).

We now prove Theorem 5.4.

Proof of Theorem 5.4. For a contradiction, we assume the following.

Assumption 5.1. Each job in Γseq incurs pi-blocking for less than (2M − 1)L − 1 time units.

In the following claim, we show that a job must exist whose request is satisfied later thanR1 to satisfy

Assumption 5.1. Consequently, when such a job is released, h new jobs are also released by Rule SR3.

Claim 5.5. There exists a requestRM+q with 1 ≤ q ≤ N − 2M + 1 that is satisfied afterR1.

168

Proof. Assume that each request RM+q with 1 ≤ q ≤ N − 2M + 1 is satisfied before R1. By Rule SR1,

R1 is the last satisfied request among {R1,R2, · · · ,RM}. Thus,R1 is the last satisfied request among all

requests in {R1,R2, · · · ,RM+N−2M+1}. Hence, by the definition of time instant ti (Rule SR2),R1 is not

satisfied before time tM+N−2M+1 = tN−M+1.

Since each request RM+q with 1 ≤ q ≤ N − 2M + 1 is satisfied before R1, no job τM+q with

1 ≤ q ≤ N − 2M +1 is released by Rule SR3. Consider any time instant tq with 1 ≤ q ≤ N − 2M +1. By

Lemma 5.9, there are M pending jobs at time tq. By Rule SR2, no job is released during (tq, tq + 1). Thus,

the number of pending jobs throughout [tq, tq + 1) is M . Since R1 is not satisfied before time tN−M+1,

τ1 is pending and pi-blocked during all intervals [tq, tq + 1) with 1 ≤ q ≤ N − 2M + 1. Thus, τ1 incurs

pi-blocking for at least (N − 2M + 1) · 1 = (2M − 1) + (2M − 1)L − 2M + 1 = (2M − 1)L time units,

contradicting Assumption 5.1.

LetRM+q be the request with smallest (M+q) value that is ordered afterR1 (τ7’s request in Figure 5.4).

Claim 5.5 guarantees the existence of such request. Therefore, the following holds.

Property 5.1. Each requestRi with i < M + q and i ̸= 1 is satisfied beforeR1. (Requests of jobs τ2–τ6 in

Figure 5.4.)

By Rule SR3, in addition to τM+q, min{N −M − q,M − 1} new jobs are released at time tq + 1.

By Claim 5.5, q ≤ N − 2M + 1 holds. Thus, N −M − q ≥ N −M − (N − 2M + 1) = M − 1 and

min{N −M − q,M − 1} =M − 1. Therefore, including τM+q, a total of M − 1 + 1 =M new jobs are

released at time tq+1. Thus, the following holds.

Property 5.2. There are M active requestsRi at time tq + 1 with i ≥M + q. (Requests of jobs τ7–τ10 in

Figure 5.4 at time 7.)

Since tq + 1 is the first time instant when jobs are released by Rule SR3, by Lemma 5.9, there are M

pending jobs τi with i < M + q at time tq. By the definition of tq, a request from one of these M jobs is

satisfied at time tq. Since 1 < L, the satisfied request is not complete by time tq + 1. Thus, these M pending

jobs with i < M + q are also pending at time tq + 1. Therefore, we have the following.

Property 5.3. There are M active requestsRi at time tq + 1 with i < M + q. (Requests of jobs τ1, τ3, τ5,

and τ6 in Figure 5.4 at time 7.)

169

By Properties 5.2 and 5.3, there are total 2M pending requests at time tq + 1. LetRi be the last satisfied

request among these 2M requests. By the definition of RM+q, i ̸= 1 holds, as RM+q is ordered after R1.

Therefore, by Property 5.1, i ≥M + q holds. By Rule QR, τi has higher priority than each of the M jobs

τj with j < M + q. By Rule SR4, no new jobs will be released untilRi is complete. Thus, τi experiences

pi-blocking until it is satisfied, which occurs after the completion of the other 2M − 1 requests. Since one of

these 2M − 1 requests is satisfied at time tq and τi is released at time tq + 1, τi incurs pi-blocking for at least

(2M − 1)L − 1 time units, contradicting Assumption 5.1.

5.2.2.3 Job Priority Assignment

In this section, we show how the lower-bound proof in Section 5.2.2.2 applies under different schedulers

by demonstrating how jobs can be assigned priorities under these schedulers so that Rule QR holds.

G-FP schedulers. The following theorem shows that the lower-bound proof in Section 5.2.2.2 is valid under

any G-FP scheduler.

Theorem 5.5. Under any reorder-bounded locking protocol, a job in Γseq incurs pi-blocking for at least

(2M − 1)L − 1 time units under any G-FP scheduler.

Proof. Consider a G-FP scheduler F . We re-index the tasks in Γ based on the task priority assignment under

F . For each i > j, τi has higher priority than τj . Thus, job priorities under F satisfies Rule QR. The theorem

follows from Theorem 5.4.

GEL schedulers. We now show that the lower-bound proof in Section 5.2.2.2 also applies under a class

of GEL schedulers. The GEL schedulers in this class assign RPPs to tasks in Γ satisfying the following

constraints.

∀ i : 1 ≤ i ≤ N − 1 :: Yi > Yi+1 + (2M − 1)L (5.12)

Theorem 5.6. Under any reorder-bounded locking protocol, a job in Γseq incurs pi-blocking for at least

(2M − 1)L − 1 time units under any GEL scheduler that satisfies (5.12).

Proof. Assume that each job in Γseq incurs pi-blocking for less than (2M − 1)L − 1 time units under a GEL

scheduler that assigns task RPPs according to (5.12). We first claim that the following hold.

∀ i ≥ 1 : ti+1 − ti < (2M − 1)L (5.13)

170

∀ i ≥ 1 : t1 < (2M − 1)L (5.14)

If either (5.13) or (5.14) does not hold, then a job must incur at least (2M − 1)L time units of pi-blocking

during [ti, ti+1), a contradiction.

We now show that (5.12) satisfies Rule QR. We show this by considering two consecutive jobs τi and

τi+1. We first show that y(τi+1)− y(τi) < 0 by considering the following three cases.

Case 1. i = M . In this case, by Rules SR1 and SR2, τi and τi+1 are released at times 0 and t1,

respectively. By (5.7), we have y(τi+1)− y(τi) = r(τi+1) + Yi+1 − r(τi)− Yi = t1 + 1+ Yi+1 − Yi. Thus,

by (5.12) and (5.14), we have y(τi+1)− y(τi) < (2M − 1)L − (2M − 1)L = 0.

Case 2. i < M or τi+1 is released by Rule SR3. In this case, by Rules SR1 and SR3, both jobs

τi and τi+1 are released at the same time, i.e., r(τi+1) = r(τi) holds. By (5.7) and (5.12), we have

y(τi+1)− y(τi) = r(τi+1) + Yi+1 − r(τi)− Yi = Yi+1 − Yi < −(2M − 1)L < 0.

Case 3. i > M and τi+1 is not released by Rule SR3. In this case, both jobs τi and τi+1 are released

by Rule SR2. By Rule SR2, τM+k is released at time tk + 1. Thus, τi = τM+(i−M) is released at

time ti−M + 1. Similarly, τi = τM+(i+1−M) is released at time ti+1−M + 1. Thus, r(τi+1) = ti+1−M + 1,

and r(τi) = ti−M + 1. Hence, by (5.13), we have r(τi+1)− r(τi) = ti−M+1 − ti−M < (2M − 1)L. Now,

by (5.7) and (5.12), we have y(τi+1)−y(τi) = r(τi+1)+Yi+1−r(τi)−Yi = r(τi+1)−r(τi)+Yi+1−Yi <

(2M − 1)L − (2M − 1)L = 0.

In all three cases, y(τi+1) < y(τi) holds. Therefore, τi+1 has an earlier PP (hence, higher priority) than

τi. Hence, Rule QR is satisfied. Thus, by Theorem 5.4, there is a job that incurs pi-blocking for at least

(2M − 1)L − 1 time units, a contradiction.

Corollary 5.2. Under any reorder-bounded locking protocol, a job in Γseq incurs pi-blocking for at least

(2M − 1)L − 1 time units G-EDF scheduling.

Proof. Let TN ≥ (2M − 1)L + (2M − 1)L2/1 = NL, and for each i < N , let Ti = Ti+1 + 2ML. Thus,

(5.12) is satisfied, as Yi = Ti holds under G-EDF. Note that TN = Tmin holds. Thus, by Lemma 5.8, Γ is

feasible. By Theorem 5.6, the corollary holds.

171

5.3 Optimality Results Under FIFO Scheduling

In the previous section, we gave a lower bound of 2M − 2 request lengths on per-request pi-blocking for

mutex sharing under a class of non-FIFO global JLFP schedulers. However, since this lower bound does not

apply to FIFO scheduling, the best-known lower bound on per-request pi-blocking under FIFO is M − 1

request lengths [Brandenburg and Anderson, 2010a]. In this section, we give a suspension-based locking

protocol that achieves a pi-blocking upper bound of M − 1 request lengths. Thus, our locking protocol is

optimal and the known lower bound of M − 1 request lengths is tight under FIFO. In addition to mutex

locks, we also give multiprocessor locking protocols for k-exclusion sharing and reader-writer sharing under

FIFO scheduling. Our locking protocols are designed for C-FIFO scheduling, so they apply to both G-FIFO

and P-FIFO scheduling.

5.3.1 Resource-Holder’s Progress Under FIFO Scheduling

Recall from Section 2.3 that any real-time locking protocol needs to ensure a resource-holding job’s

progress whenever a job waiting for the same resource is pi-blocked, for otherwise, the maximum per-job

pi-blocking can be very large or even unbounded. This is done by employing progress mechanisms that

may temporarily raise a job’s effective priority. To date, many progress mechanisms have been devised

to design multiprocessor locking protocols that are asymptotically optimal under any JLFP scheduling

policy [Brandenburg and Anderson, 2010a, 2014]. Interestingly, for C-FIFO scheduling, no such progress

mechanism is required to design optimal locking protocols. In fact, the C-FIFO scheduling policy itself has

properties that ensure the progress of a resource-holding job. The key property that enables such progress is

given in the following lemma.

Lemma 5.11. Under C-FIFO scheduling, if a job τi,j becomes one of the c highest-priority eligible jobs in

its cluster at time th, then it remains so during [th, f(τi,j)).

Proof. Assume for a contradiction that t is the first time instant in [th, f(τi,j)) such that τi,j is not one of the

c highest-priority eligible jobs in its cluster. Then, t > th holds. By the definition of time t, there are at most

c− 1 (resp., at least c) eligible jobs with higher priority than τi,j at time t− 1 ≥ th (resp., t) in τi,j’s cluster.

Thus, there is a task τp that has an eligible job τp,v with higher priority than τi,j at time t, but it has no such

job at time t− 1.

172

Since τp,v’s priority exceeds τi,j’s, r(τp,v) ≤ r(τi,j) holds. Since τi,j is eligible at time th, r(τi,j) ≤ th

holds. Thus, r(τp,v) ≤ th and τp,v is pending at time t− 1. We now consider two cases.

Case 1. v = 1. In this case, τp,v is also eligible at time th. Thus, τp has an eligible job with higher priority

than τi,j at time t− 1, a contradiction.

Case 2. v > 1. Since τp,v is not eligible at time t − 1, job τp,v−1 is eligible at time t − 1. We have

r(τp,v−1) < r(τp,v) ≤ r(τi,j). Thus, τp has an eligible job with higher priority than τi,j at time t − 1, a

contradiction.

Therefore, we reach a contradiction in both cases.

Utilizing Lemma 5.11, we have the following lemma.

Lemma 5.12. If a job τi,j issues a requestR when it is one of the c highest-priority jobs in its cluster, then

τi,j is always scheduled fromR’s satisfaction to completion.

Proof. Let tr, ts, and tc be the time instants whenR is issued, satisfied, and complete, respectively. Thus,

tr ≤ ts ≤ tc holds. Since τi,j is one of the c highest-priority eligible jobs in its cluster at time tr, by

Lemma 5.11, τi,j remains one of the c highest-priority eligible jobs in its cluster throughout [tr, tc). SinceR

is satisfied at time ts ≥ tr, τi,j is ready throughout [ts, tc). Thus, τi,j is scheduled during [ts, tc).

Thus, by requiring a request to be issued only when the request-issuing job is one of the top-c-priority

jobs in its cluster, we can ensure a resource-holder’s progress under C-FIFO scheduling. We exploit this

property in designing our protocols. Note that the C-OMLP ensures this property by employing priority

donation as its progress mechanism at the expense of additional release blocking that may be incurred by a

job even if it does not require any resources [Brandenburg and Anderson, 2011]. Due to this, our protocols

have features in common with the C-OMLP.

5.3.2 Mutex Locks

In this section, we introduce the optimal locking protocol for mutual exclusion sharing under C-FIFO

scheduling (OLP-F), which achieves the optimal pi-blocking bound under C-FIFO scheduling. To match the

lower bound on pi-blocking, the OLP-F ensures that each job suffers pi-blocking for the duration of at most

M − 1 request lengths and incurs no release blocking.

173

Time

τ1

τ2

τ3

0 5 10 15
CS

Normal Execution

Suspension

Lock Release

Request Issuance

Completion

Deadline

Release

Figure 5.5: A schedule illustrating the OLP-F.

Structures. For each resource ℓq, we have a FIFO queue FQq that contains requests for ℓq. A requestR is

satisfied if and only ifR is the head of the FQq.

Rules. When a job τi,j attempts to issue a requestR for a resource ℓq, it proceeds according to the following

rules.

MR1. τi,j is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster. τi,j is

suspended if necessary to ensure this condition.

MR2. When τi,j issuesR, R is enqueued in FQq. If τi,j becomes the head of FQq, then it is immediately

satisfied. Otherwise, it is suspended.

MR3. R is satisfied when it is the head of FQq. R is removed from the FQq when it is complete.

Example 5.5. Figure 5.5 illustrates a C-FIFO schedule of three jobs on a two-processor cluster. The jobs

of τ1 and τ2 are released earlier (hence, have higher priorities) than the job of τ3. Both jobs of τ1 and τ2

issue requests for resource ℓq at time 3 and τ1’s request is enqueued first. Assuming no job in a different

cluster holds ℓq, τ1’s job acquires ℓq at time 3 by Rule MR2. At time 3, since τ2’s job is suspended, the job

of τ3 starts to execute. At time 4, the job of τ3 attempts to issue a request for ℓq, but it is suspended due

to Rule MR1 as it is not one of the top-2-priority jobs at that time. At time 6, τ1’s job releases ℓq and τ2’s

request is satisfied according to Rule MR3. Since the job of τ3 becomes one of the top-2-priority jobs when

τ1’s job completes, it issues a request for ℓq at time 7. ◀

Analysis. To derive an upper bound on the pi-blocking suffered by a job, we first show that FQq contains no

more than M requests at any time.

Lemma 5.13. Under the OLP-F , at any time, FQq contains at most M requests.

174

Time

R
t1 t2 t3 t4

Ji is not one of the c
highest-priority eligible jobs

it its cluster

Ji is one of the c
highest-priority eligible jobs

in its cluster

CS

Suspension

Lock Release

Request Issuance

Figure 5.6: Timeline of a request under the OLP-F.

Proof. Assume that t is the first time instant when FQq contains more than M requests. Each job has at most

one active request at any time. Thus, at time t, FQq must contain a request R issued by a job τi,j that is

not one of the c highest-priority eligible jobs in its cluster. Let t′ ≤ t be the time instant when τi,j issues

R. By Rule MR1, τi,j is one of the c highest-priority eligible jobs in its cluster at time t′. Since τi,j is not

complete at time t, by Lemma 5.11, it is one of the c highest-priority eligible jobs in its cluster at time t, a

contradiction.

We now determine an upper bound on the request blocking suffered by job τi,j when it issues a requestR

for resource ℓq. Figure 5.6 depicts the timeline ofR from when τi,j attempts to issueR to whenR completes.

Let t1 be the time instant when job τi,j attempts to issue requestR. Let t2 be the first time instant at or after

time t1 when τi,j becomes one of the top-c-priority eligible jobs in its cluster. Therefore, by Rule MR1,R is

issued at time t2. Let t3 and t4 be the time instants whenR is satisfied and completed, respectively.

Lemma 5.14. During [t1, t3], τi,j incurs pi-blocking for at most Lq
sum,M−1 time units.

Proof. By the definition of t2, τi,j is not one of the top-c-priority eligible jobs in its cluster during [t1, t2).

Hence, τi,j is not pi-blocked during that time. By Lemma 5.11, τi,j is pi-blocked throughout [t2, t3). By

Lemma 5.12, τi,j is continuously scheduled during [t3, t4). Thus, from t1 to t4, τi,j is only pi-blocked during

[t2, t3).

By Lemma 5.13, at most M − 1 other requests precede R in FQq at time t2. By Rule MR3 and

Lemma 5.12, each job at the head of FQq is continuously scheduled until its request is complete. Since each

task τk has at most Pk eligible jobs and each job has at most one request at any time, t3 − t2 is not more than

Lq
sum,M−1 (by Definition 5.1) time units and the lemma follows.

We now show that the OLP-F does not cause any release blocking under C-FIFO scheduling.

175

Table 5.2: Asymptotically optimal locking protocols for k-exclusion locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking

Clustered JLFP CK-OMLP [Brandenburg and
Anderson, 2010a]

maxq{⌈M/kq⌉Lq
max} (⌈M/kq⌉ − 1)Lq

max

Global JLFP OKGLP [Elliott and Anderson,
2013]

0 (2⌈M/kq⌉+ 4)Lq
max

Global JLFP R2DGLP [Ward et al., 2012] 0 (2⌈M/kq⌉ − 2)Lq
max

C-FIFO k-OLP-F (This dissertation) 0 (⌈M/kq⌉ − 1)Lq
max

Lemma 5.15. Under the OLP-F , no job incurs release blocking.

Proof. Since a resource-holding job is scheduled only when its priority is among the top c in its cluster, a

resource requestR does not cause pi-blocking to any job (within and across cluster boundaries) that does not

issue a request during the timeR is satisfied.

Theorem 5.7. Under the OLP-F , τi,j is pi-blocked for at most bi =
∑nr

q=1N
q
i · L

q
sum,M−1 time units.

Proof. Follows from Lemmas 5.14 and 5.15.

Thus, the OLP-F is an optimal locking protocol under C-FIFO scheduling.

5.3.3 k-Exclusion Locks

k-exclusion generalizes mutual exclusion by allowing up to k simultaneous lock holders; thus, mutual

exclusion is equivalent to 1-exclusion. In this section, we give an optimal k-exclusion locking protocol under

C-FIFO scheduling. We assume that a resource ℓq can be concurrently held by up to kq ≤M jobs. We begin

by reviewing known lower-bound results for k-exclusion.

Lower bound on pi-blocking. For k-exclusion, Elliot et al. showed that a task system and a release sequence

for it exist such that a job requesting a resource ℓq incurs s-oblivious pi-blocking for the duration of ⌈M−kq
kq
⌉

request lengths under any JLFP scheduler [Elliott and Anderson, 2013].

Asymptotically optimal locking protocols. Under s-oblivious analysis, the CK-OMLP [Brandenburg and

Anderson, 2010a], the OKGLP [Elliott and Anderson, 2013], and the R2DGLP [Ward et al., 2012] ensure

asymptotically optimal pi-blocking for k-exclusion. Table 5.2 summarizes these protocols.

176

The k-OLP-F. We now introduce the optimal locking protocol for k-exclusion under C-FIFO scheduling

(k-OLP-F), which achieves optimal pi-blocking for k-exclusion under C-FIFO scheduling. The k-OLP-F

ensures that a job suffers pi-blocking for the duration of no more than ⌈M−kq
kq
⌉ request lengths for each

request for ℓq and incurs no release blocking.

Structures. For each resource ℓq, we have a FIFO queue FQq that contains waiting requests for ℓq. We also

have a queue SQq of length at most kq that contains the satisfied requests for ℓq. Initially, both queues are

empty. A requestR is satisfied if and only ifR is in SQq.

Rules. When a job τi,j attempts to issue a requestR for a resource ℓq, it proceeds according to the following

rules.

KR1. τi,j is allowed to issue R only if τi,j is one of the c highest-priority eligible jobs in its cluster. τi,j

suspends if necessary to ensure this condition.

KR2. If the length of SQq is less than kq when τi,j issuesR, thenR is enqueued in SQq and is immediately

satisfied. Otherwise,R is enqueued in FQq and τi,j suspends.

KR3. WhenR completes, it is removed from SQq. If FQq is non-empty at that time, then the head of FQq is

dequeued, enqueued in SQq, and satisfied.

Example 5.6. Figure 5.7 shows a schedule of five jobs that share a resource ℓq with kq = 2. The jobs of

τ1, τ2, and τ3 (resp., τ4 and τ5) are C-FIFO scheduled on a two-processor cluster G1 (resp., G2). Since SQq

is initially empty, by Rule KR2, the jobs of τ4 and τ1 acquire ℓq at times 2 and 3, respectively. Since the

jobs of both τ2 and τ5 are one of the top-2-priority eligible jobs in their clusters, by Rule KR1, they issue

requests for ℓq at times 4 and 5, respectively. At time 5, the job of τ3 attempts to issue a request for ℓq, but is

suspended by Rule KR1. At time 5, the job of τ4 releases ℓq and is removed from SQq by Rule KR3. τ2’s

request is at the head of FQq at time 5, so by Rule KR3, it is removed from FQq, enqueued in SQq, and

satisfied. At time 7, the job of τ1 completes and the job of τ3 becomes one of the top-2-priority jobs in G1

and issues its request, by Rule KR1. ◀

Analysis. We now derive an upper bound on the pi-blocking suffered by a job under the k-OLP-F. We first

derive an upper bound on the number of waiting requests in FQq.

Lemma 5.16. Under the k-OLP-F , FQq contains at most M − kq requests.

177

Time

τ1

τ2

τ3

τ4

τ5

0 5 10 15

G1

G2

CS

Normal Execution

Suspension

Lock Release

Request Issuance

Completion

Deadline

Release

Figure 5.7: A schedule illustrating the k-OLP-F. Concurrent resource accesses are shaded differently.

Proof. Assume otherwise. Let t be the first time instant such that FQq contains more than M − kq requests.

Thus, a new requestR′ is enqueued in FQq at time t. By Rule KR2, SQq contains kq requests at time t. Thus,

the number of active requests (either satisfied or waiting) is more than kq +M − kq =M at time t. Since

each job has at most one active request at any time, there is an active requestR issued by a job τi,j that is not

one of the c highest-priority jobs in its cluster. By Rule KR1, τi,j is one of the c highest-priority jobs in its

cluster when it issuesR at time t′ ≤ t. By Lemma 5.11, τi,j remains one of the c highest-priority jobs in its

cluster at time t, a contradiction.

We now determine an upper bound on request blocking. We consider a job τi,j that issues a requestR

for resource ℓq. As in Figure 5.6, let t1, t2, t3, and t4 be the time instants corresponding to when τi,j attempts

to issueR, and whenR is issued, satisfied, and complete, respectively.

Lemma 5.17. For requestR, τi,j suffers request blocking for at most Lq

sum,⌈M−kq
kq

⌉
time units.

Proof. By Definition 5.4, τi,j does not suffer any pi-blocking during [t1, t2) and [t3, t4). By Lemma 5.11

and the definition of t2, τi,j suffers pi-blocking during the entire duration of [t2, t3), so it suffices to upper

bound (t3 − t2). If SQq contains fewer than kq requests at time t2, then t3 − t2 = 0 holds by Rule KR2, so

assume otherwise. At time t2, no two requests in SQq and FQq are from the same task. By Rule KR3,R is

satisfied when it is dequeued from FQq. Thus, by Lemma 5.16, at most M − kq requests are required to be

dequeued to satisfy R. By Rule KR2, kq jobs hold ℓq throughout [t2, t3). By Rule KR1 and Lemma 5.12,

each resource-holding job is always scheduled. Thus, per Lq
sum,h time units during [t2, t3) at least h · kq

178

requests complete—and hence, by Rule KR3, at least h · kq requests are dequeued from FQq. Dequeuing

M − kq requests from FQq thus requires at most Lq

sum,⌈M−kq
kq

⌉
time units, so t3 − t2 ≤ Lq

sum,⌈M−kq
kq

⌉
.

Similar to the OLP-F, no release blocking occurs under the k-OLP-F. Therefore, by Lemma 5.17, we

have the following theorem.

Theorem 5.8. Under the k-OLP-F , τi,j suffers pi-blocking for at most bi =
∑nr

q=1N
q
i · L

q

sum,⌈M−kq
kq

⌉
time

units.

Thus, the k-OLP-F is optimal for k-exclusion locking under C-FIFO scheduling.

5.3.4 Reader-Writer Locks

Some resources can be read without alteration. For such resources, it may be desirable to support

reader-writer (RW) sharing. Here, writers have mutually exclusive access to the resource, but multiple

readers can access the resource simultaneously.

Under RW sharing, it is often desirable to ensure fast read access. However, enabling fast read access

may cause write requests to starve. This can happen under a read-preference RW lock that never satisfies a

write request if a read request is active. More generally, these observations give rise to an important question:

what is the minimum request blocking a read request can incur without causing a write request to starve?

Lower bound on read request blocking. As we show next, ensuring a read request delay of 2Lq
max − 2

time units can in fact cause writer starvation.

Theorem 5.9. For M ≥ 8, a task system and a release sequence for it exist such that any locking protocol

that ensures request blocking of at most 2Lq
max − 2 time units for read requests causes unbounded request

blocking for write requests under any work-conserving scheduler.

Proof. We give an example task system Γ and a release sequence for it supporting the claim. Let τ1, τ2, . . . , τM

be M sporadic tasks scheduled on M processors. All tasks have WCETs of L + 1 time units with

2 ≤ L ≤ (M − 2)/3. Figure 5.8 illustrates this for M = 8 and L = 2. Each job’s execution con-

sists of 1.0 time unit of non-CS execution followed by L time units of CS execution. Tasks τ1, τ2, . . . , τM−1

issue read requests for resource ℓq, while τM issues a write request for ℓq. The periods of all tasks are M − 1.

Each task has an implicit deadline.

179

Time

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

0 5 10

CS

Normal Execution

Suspension

Lock Release

Request Issuance

Completion

Deadline

Release

Figure 5.8: A schedule illustrating Theorem 5.9.

Feasibility of Γ. We show that Γ is HRT-schedulable under a write-preference RW lock and any work-

conserving scheduler. A write-preference RW lock does not satisfy any read request if a write request is

waiting. Since τM is the only writer task, under a write-preference RW lock, τM ’s jobs acquire ℓq immediately

(if no reader jobs hold ℓq) or immediately after the currently satisfied read requests complete (otherwise).

Thus, the following property is satisfied.

Property 5.4. Each of τM ’s jobs acquires ℓq within L time units of its request issuance.

Since there areM tasks, a processor is always available for τM . Thus, with a WCET of L+1 and resource

acquisition time of at most L, each job of τM completes within L+ 1 + L = 2L+ 1 ≤ 2(M − 2)/3 + 1 <

M − 2 + 1 =M − 1 = TM time units after its release.

For reader tasks τ1, τ2, . . . , τM−1, a read requestR issued at time t is satisfied immediately if there is

no waiting write request. Otherwise, by Property 5.4, the pending write request by τM ’s job is satisfied by

time t + L and complete by time t + L + L = t + 2L (as a processor is available). Since τM is the only

writer task, after completion of the write request, there is no pending write request. Thus, R is satisfied

by time t + 2L. With a WCET of L + 1, the job issuing R completes within L + 1 + 2L = 3L + 1 ≤

3(M − 2)/3 + 1 =M − 2 + 1 =M − 1 = Ti time units after its release. Therefore, Γ is HRT-feasible.

180

Release sequence for Γ. τM releases its jobs periodically from time 1. τ1 releases its first job at time 0 and

its subsequent jobs’ release times are defined as r(τ1,j+1) = f(τM−1,j)− L. The release times of τi’s jobs

with 2 ≤ i < M are r(τi,j) = f(τi−1,j)− L. Thus, for 2 ≤ i < M , we have

r(τi,j) = f(τi−1,j)− L

≥ {Since τi−1,j executes for L+ 1 time units}

r(τi−1,j) + L+ 1− L

= r(τi−1,j) + 1. (5.15)

Similarly, for τ1, it can be shown that

r(τ1,j+1) ≥ r(τM−1,j) + 1. (5.16)

We now show that consecutive jobs of τi with i < M are released at least Ti time units apart. For 2 ≤ i < M ,

by (5.15), we have

r(τi,j+1) ≥ r(τi−1,j+1) + 1

≥ {Applying (5.15) repeatedly for i− 2 times}

r(τ1,j+1) + 1 + (i− 2)

≥ {By (5.16)}

r(τM−1,j) + 1 + (i− 1)

≥ {Applying (5.15) repeatedly for M − 1− i times}

r(τi,j) + (M − 1− i) + i

= r(τi,j) +M − 1

= r(τi,j) + Ti. (5.17)

Similarly, we can show that consecutive jobs of τ1 are released at least T1 time units apart.

We now show that each job of τi with i < M is eligible when it is released by showing that τi,j

completes before τi,j+1’s release. For 2 ≤ i < M − 1, in the third step of the derivation of (5.17), applying

181

(5.15) repeatedly for M − 2 − i times instead of M − 1 − i times, we have r(τi,j+1) ≥ r(τi+1,j) +

(M − 2 − i) + i = r(τi+1,j) +M − 2. Since L ≤ (M − 2)/3 < M − 2 and r(τi+1,j) = f(τi,j) − L,

we get r(τi,j+1) > r(τi+1,j) + L = f(τi,j). For i = M − 1, the first step in the derivation of (5.17)

yields r(τM−1,j+1) ≥ r(τ1,j+1) + 1 + (M − 1 − 2) = r(τ1,j+1) + M − 2 > r(τ1,j+1) + L. Since

r(τ1,j+1) = f(τM−1,j) − L, we get r(τM−1,j+1) > f(τM−1,j). For i = 1, applying (5.15) in (5.16)

repeatedly for M − 3 times, we have r(τ1,j+1) ≥ r(τ2,j) + M − 2 > r(τ2,j) + L = f(τ1,j). Thus,

r(τi,j+1) > f(τi,j) for i < M .

Finishing up. We now prove the theorem by showing that τM,1’s write request is never satisfied if the request

blocking for read requests is at most 2L− 2. Assume that τM,1’s request is satisfied at time t. We have t > 2,

as τM,1 issues its request at time 2 and τ1,1 holds ℓq then (under a work-conserving scheduling policy, τ1,1

acquires ℓq at time 1). Since the scheduling policy is work-conserving, a job τi,j must release ℓq at time t.

Thus, f(τi,j) = t.

By the job release pattern of τ1, τ2, . . . , τM−1, there exists a job τw,v such that r(τw,v) = f(τi,j)− L =

t − L. Since each job is eligible when it is released and there are M tasks, τw,v issues a read request R

at time r(τw,v) + 1 = t − L + 1 < t (as L ≥ 2). Since τM,1’s write request is satisfied at time t, R

cannot be satisfied before time t+ L. Since the task count is M , τw,v is pi-blocked for a duration of at least

t + L − (t − L + 1) = 2L − 1 time units. Thus, request blocking for read requests exceeds 2L − 2 time

units, reaching a contradiction.

Thus, read request blocking of at least 2Lq
max − 1 time units is fundamental to avoid writer starvation.

We now establish a lower bound on write request blocking when read requests suffer request blocking for at

most 2Lq
max − 1 time units.5

Theorem 5.10. For M ≥ 4, there exists a task system and a release sequence for it such that any locking

protocol that ensures at most 2Lq
max − 1 read request blocking causes write request blocking of (2M −

5)Lq
max − 1 time units under any work-conserving scheduler.

Proof. Let τ1, τ2, . . . , τN be N tasks scheduled on M ≥ 4 processors, where N = 2M − 4. Each task has

a WCET of L + 1 time units with L ≥ 1. Figure 5.9 illustrates this for M = 5 and L = 3. Each job’s

5Assuming higher read request blocking would yield a smaller lower bound on write request blocking. Note that
deriving tight lower bounds for RW locks is much more complicated than for the other locks considered in this
dissertation because much leeway exists regarding the interplay between readers and writers.

182

Time

Read

Read

Read

Write

Write

Write

τ1

τ2

τ3

τ4

τ5

τ6

0 5 10 15 20

CS

Normal Execution

Suspension

Lock Release

Request Issuance

Completion

Deadline

Release

Figure 5.9: A schedule illustrating Theorem 5.10. Read and write CSs are shaded differently.

execution consists of 1.0 time unit of non-CS execution followed by L time units of CS execution. Tasks

τ1, τ2, . . . , τM−2 issue write requests for resource ℓq, while τM−1, τM , . . . , τ2M−4 issue read requests for ℓq.

Each task’s period is T ≥ (2M − 4) · (L+ 1) and relative deadline is T ≥ (2M − 4) · (L+ 1). The task

WCETs sum to (2M − 4) · (L+ 1), so the task system can be scheduled by sequentially executing the jobs

on a single processor (i.e., it is feasible).

Tasks τ1, τ2, . . . , τM−2 release their first jobs at time 1. Task τM−1 releases its first job at time 0. For

i > M − 1, the release time of τi,1 is determined as r(τi,1) = f(τi−1,1)− 1. Hence, from time 0, there is

always an eligible first job of a task until all first jobs are complete. Since all WCETs sum to (2M−4)·(L+1),

under a work-conserving scheduler, the first job of each task completes by time (2M − 4) · (L+ 1) ≤ T .

Subsequent job release times can be easily defined so that each task’s consecutive job releases are at least T

time units apart.

We now prove that each first job τi,1 always incurs pi-blocking when it is waiting for ℓq. For any job τi,1

with i > M , we have r(τi,1) = f(τi−1,1)− 1 ≥ r(τi−1,1) + L+ 1− 1 = f(τi−2,1)− 1 + L. Since L ≥ 1,

we have r(τi,1) ≥ f(τi−2,1). Thus, at most two first jobs of the last M − 2 tasks are pending at the same

time. Therefore, at most M − 2 + 2 = M first jobs are pending at any time, which implies that a job τi,1

incurs pi-blocking if it is waiting.

Finally, we prove the claim of the theorem by showing that there is a writer job that incurs pi-blocking

for the duration of (2M − 5)L− 1 time units. Job τM−1,1 issues a read request at time 1 and acquires ℓq (as

183

Table 5.3: Asymptotically optimal locking protocols for RW locks under s-oblivious analysis.

Scheduling Protocol Release
blocking

Read request
blocking

Write request
blocking

Clustered JLFP CRW-OMLP [Brandenburg and
Anderson, 2010a]

2mLmax 2Lq
max (2m−1)Lq

max

C-FIFO RW-OLP-F (This dissertation) 0 2Lq
max − 1 (2m−3)Lq

max

the scheduling policy is work-conserving). Figure 5.9 illustrates this. Each job τi,1 with i < M − 1 issues a

write request at time 2.

Each job τi,1 with i > M − 1 (e.g., the jobs of τ5 and τ6 in Figure 5.9) is released 1.0 time unit before

τi−1,1 completes and issues a read request when τi−1,1 completes. Thus, τi,1’s read request cannot be delayed

to satisfy two or more pending write requests without incurring read request blocking of at least 2L time

units. As a result, at most one write request can be satisfied between two consecutive read requests. Thus,

there is a write request from a job τw,1 with i < M − 1 (e.g., τ3’s job in Figure 5.9) that must be satisfied

after all read and write requests of each job τi,1 with i ̸= u complete.

Since τw,1 issues its request at time 2 and τM−1,1 (e.g., τ4’s job in Figure 5.9) acquires ℓq at time 1, τM−1,1

pi-blocks τu,1 for L− 1 time units. The stated job release pattern ensures that no two of the remaining M − 3

read requests (e.g., those by τ5 and τ6 in Figure 5.9) overlap, so they pi-block τw,1 for (M − 3)L time units.

Finally, τw,1 is pi-blocked by each of the other M − 3 write requests (e.g., those by τ1 and τ2 in Figure 5.9)

for (M −3)L time units. Thus, τw,1 incurs pi-blocking for L−1+(M −3)L+(M −3)L = (2M −5)L−1

time units.

For simplicity, Theorems 5.8 and 5.10 are stated for work-conserving scheduling. However, both

theorems are also true under a wider class of schedulers and locking protocols that are top-c-work-conserving.

On a c-processor cluster, a top-c-work-conserving scheduling ensures that any top-c-highest priority ready

job immediately acquires a shared resource (including processor) if such a resource is idle. Note that a

work-conserving scheduler and locking protocol combination is also top-c-work-conserving.

Asymptotically optimal RW locking protocols. For RW locks, the CRW-OMLP is an asymptotically

optimal locking protocol under clustered JLFP scheduling [Brandenburg and Anderson, 2010a]. The

CRW-OMLP is a phase-fair RW locking protocol. Phase-fair RW locks satisfy read and write requests in

alternating phases [Brandenburg and Anderson, 2010b]. At the beginning of a reader phase, all waiting read

184

requests are satisfied simultaneously, while at the beginning of a writer phase, a single waiting write request

is satisfied. Table 5.3 summarizes the CRW-OMLP.

The RW-OLP-F. We now introduce the read-optimal RW locking protocol under C-FIFO scheduling

(RW-OLP-F), which achieves optimal pi-blocking for read requests under C-FIFO scheduling. The

RW-OLP-F is a phase-fair RW locking protocol that achieves 2Lq
max − 1 (resp., (2M − 3)Lq

max) request

blocking for read (resp., write) requests. Unlike the CRW-OMLP, the RW-OLP-F has no release blocking

under C-FIFO scheduling.

Structures. For each resource ℓq, we have two queues RQ1
q and RQ2

q that contain read requests for ℓq, and a

FIFO queue WQq that contains write requests for ℓq. One of the read queues acts as a collecting queue and

the other acts as a draining queue. The roles of RQ1
q and RQ2

q alternate, i.e., each switches over time between

being the collecting queue and being the draining queue. Initially, RQ1
q is the collecting queue and RQ2

q is the

draining queue.

Reader rules. Assume that a job τi,j attempts to issue a read requestR for resource ℓq. Let RQc
q and RQd

q

be the collecting and draining queues, respectively, when τi,j issuesR.

RR1. τi,j is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster. τi,j

suspends if necessary to ensure this condition.

RR2. If WQq is empty when τi,j issuesR, thenR is immediately satisfied and enqueued in RQd
q . Otherwise,

τi,j suspends andR is enqueued in RQc
q.

RR3. If R is in RQc
q, then it is satisfied (along with all other requests in RQc

q) when RQc
q becomes the

draining queue (see Rule WR3). If RQc
q becomes the draining queue at time t and a read request

is issued at time t, then that request is enqueued in RQc
q before making it the draining queue. R is

removed from RQc
q when it is complete. If RQc

q becomes empty because ofR’s removal, then the head

of WQq (if any) is satisfied.

Writer rules. When a job τw,j attempts to issue a write requestR for a resource ℓq, it proceeds according to

the following rules.

WR1. τw,j is allowed to issue R only if it is one of the c highest-priority eligible jobs in its cluster. τw,j

suspends if necessary to ensure this condition.

185

WR2. If RQ1
q , RQ2

q , and WQq are empty whenR is issued, thenR is immediately satisfied and enqueued in

WQq. Otherwise,R is enqueued in WQq and τw,j suspends.

WR3. Let RQd
q and RQc

q be the draining and collecting queues, respectively, whenR is the head of WQq. R

is satisfied whenR is the head of WQq and RQd
q is empty. WhenR is complete,R is dequeued from

WQq and if RQc
q is non-empty, then RQc

q (resp., RQd
q) becomes the draining (resp., collecting) queue.

Otherwise (RQc
q is empty), the new head of WQq (if any) is satisfied.

Analysis. We now determine an upper bound on request blocking. For M ≤ 2, by Lemma 5.11 and

Rules RR1 and WR1, there are at most two active requests and at most one waiting request at any time, so

request blocking is at most Lq
max time units for both reads and writes. Henceforth, we assume M ≥ 3. The

following lemma follows from Lemma 5.11 and Rules RR1 and WR1; we omit its proof as it is similar to

Lemma 5.13.

Lemma 5.18. The total number of requests in RQ1
q , RQ2

q , and WQq is at most M .

We now give two helper lemmas.

Lemma 5.19. If a write requestR is the head of WQq at time t, then it is satisfied by time t+ Lq
max.

Proof. Let RQc
q and RQd

q be the collecting and draining queue, respectively, at time t. IfR is not satisfied at

time t, then by Rule WR3, RQd
q is non-empty at time t. By Rule RR3, jobs with requests in RQd

q hold ℓq

at time t. Let t′ be the time instant when all such requests are complete. By Lemma 5.12 and Rule RR1,

t′ ≤ t + Lq
max. By Rule RR2, no read requests are enqueued in RQd

q during [t, t′). Thus, RQd
q becomes

empty at time t′. By Rule WR3,R is satisfied at time t′. Thus, the lemma holds.

Lemma 5.20. If a write requestR is the head of WQq at time t, then it is complete by time t+ 2Lq
max.

Proof. By Lemma 5.19, R is satisfied by time t + Lq
max. By Lemma 5.12 and Rule WR1, R completes

within Lq
max time units after being satisfied. Thus, the lemma holds.

We now determine an upper bound on the request blocking suffered by a job when it issues a read request.

We consider a job τi,j that issues a read request R for resource ℓq. As depicted in Figure 5.6, let t1, t2, t3,

and t4 be the time instants corresponding to when τi,j attempts to issueR, and whenR is issued, satisfied,

and complete, respectively. In the lemma below, we show that request blocking for read requests is at most

2Lq
max.

186

Lemma 5.21. For a read requestR, τi,j suffers request blocking for at most 2Lq
max − 1 time units.

Proof. τi,j suffers pi-blocking for the duration of [t2, t3). Let RQc
q and RQd

q be the collecting and draining

queue, respectively, at time t2. If WQq is empty at time t2, then t2 = t3 holds according to Rule RR2, so

assume otherwise. By Rule RR2,R is enqueued in RQc
q. LetR′ be the request at the head of WQq at time t2.

Assume thatR′ completes at time t′2. By Rules WR3 and RR3, RQc
q becomes the draining queue andR is

satisfied at time t′2. Therefore, t′2 = t3 holds. We now consider two cases.

Case 1. R′ is satisfied at or before t2. Then, the completion time of R′ is t′2 ≤ t2 + Lq
max. Since R is

enqueued in RQc
q at time t2 andR′ is satisfied throughout [t2, t′2), by Rule WR3, RQc

q becomes the draining

queue at time t′2. Thus, by Rule RR3, all requests in RQc
q, includingR, are satisfied at time t′2. Therefore, for

R, τi,j incurs pi-blocking for at most Lq
max time units.

Case 2. R′ is satisfied after t2. SinceR′ is the head of WQq at time t2, read requests of the draining queue

are satisfied at time t2. By Rule RR3, the queue containing the satisfied read requests becomes the draining

queue at or before time t2− 1, as otherwiseR would have also been enqueued in that queue and immediately

satisfied. All these read requests complete by time t2 − 1 + Lq
max. Thus, the draining queue becomes

empty (by Rule RR3) andR′ is satisfied (by Rule WR3) by time t2 − 1 + Lq
max. Therefore,R′ completes

and RQc
q becomes the draining queue (by Rule WR3) by time t2 − 1 + 2Lq

max. Hence, R is satisfied by

time t2 − 1 + 2Lq
max, which implies that τi,j is pi-blocked for at most 2Lq

max − 1 time units for requestR.

In both cases, τi,j suffers pi-blocking for at most 2Lq
max − 1 time units for read requestR.

Finally, we give an upper bound on the request blocking incurred by a job when issuing a write request.

Let τw,j be a job that issues a write requestR at time t.

Lemma 5.22. For a write requestR, τw,j incurs request blocking for at most (2M − 3)Lq
max time units.

Proof. If no request holds ℓq at time t, then by Rule WR2,R is immediately satisfied. This leaves two cases.

Case 1. A job with a read request holds ℓq at time t. By Lemma 5.18, RQ1
q , RQ2

q , and WQq hold at most

M requests at time t. Since there is an active read request, at most M − 2 write requests precede R in

WQq. By Rule WR3, each of those write requests becomes the head of WQq when its preceding write

request completes. By Lemma 5.20, a write request at the head of WQq completes within 2Lq
max time

units from when it becomes the head. Thus, all M − 2 write requests that precedeR in WQq are complete

187

by time t + 2(M − 2)Lq
max. By Lemma 5.19, after becoming the head of WQq, R is satisfied within an

additional Lq
max time units. Thus,R is satisfied by time t+ (2M − 3)Lq

max.

Case 2. A job with a write requestR′ holds ℓq at time t. We consider two subcases.

Case 2a. WQq contains M requests at time t. Thus, M − 1 requests precedeR in WQq. By Lemma 5.12

and Rule WR1,R′ completes within Lq
max time units from t. By Lemma 5.11 and Rules RR1 and WR1, no

requests are issued beforeR′ completes. Thus, by Rule WR3, the write requestR′′ followingR′ is satisfied

when R′ is complete. By Lemma 5.12 and Rule WR1, R′′ completes within Lq
max time from when it is

satisfied. Thus, the top two requests in WQq are complete by time t+ 2Lq
max. By Lemma 5.20, each of the

remaining M − 3 write requests precedingR is complete within 2Lq
max time units after becoming the head

of WQq. Thus,R becomes the head of WQq by time t+ 2Lq
max + 2(M − 3)Lq

max = t+ 2(M − 2)Lq
max.

By Lemma 5.19,R is satisfied within Lq
max time units after becoming WQq’s head. Thus,R is satisfied by

time t+ (2M − 3)Lq
max.

Case 2b. WQq contains at most M − 1 requests at time t. Thus, at most M − 2 requests precedeR in WQq.

By Lemma 5.12,R′ completes within Lq
max time units from t. By Lemma 5.20, each of the remaining M − 3

write requests preceding R′ completes within 2Lq
max time units from when it becomes the head of WQq.

Thus, R becomes the head of WQq within Lq
max + 2(M − 3)Lq

max = (2M − 5)Lq
max time units from t.

By Lemma 5.19,R is satisfied within Lq
max time units after becoming WQq’s head. Thus,R is satisfied by

time (2M − 4)Lq
max.

Similar to the OLP-F, no job suffers release blocking due to a resource-holding job under the RW-OLP-F.

By Lemma 5.21 and 5.22 and letting N q,r
i and N q,w

i denote the maximum number of read and write requests

for ℓq by τi, we have the following.

Theorem 5.11. Under the RW-OLP-F , τi,j is pi-blocked for at most

bi =

nr∑
q=1

(N q,r
i · (2L

q
max − 1) +N q,w

i · (2M − 3)Lq
max) .

By Rules RR1, RR2, WR1, and WR2, G-FIFO scheduling and RW-OLP-F ensures top-c-work-

conserving property. Thus, by Theorems 5.9 and 5.10, the RW-OLP-F ensures that request blocking

for read requests is optimal, while that for write requests is just within two request lengths of optimal. Note

188

that a more nuanced expression of the bound in Theorem 5.10 is possible by replacing 2Lq
max in by the sum

of the maximum read request length and the maximum write request length.

5.4 Experimental Evaluation

In this section, we present the results of experiments we have conducted to evaluate our proposed locking

protocols for FIFO schedulers.

Task system generation. Our task-system generation method is similar to that used in prior locking-related

schedulability studies [Brandenburg, 2011, 2014; Yang et al., 2015]. We generated task systems randomly

for systems with {4, 8, 16} processors. For each processor count, we generated task systems that have a

normalized utilization, i.e.,
∑N

i=1 ui/M , from 0.2 to 0.9 with a step size of 0.1. We chose the number

of tasks uniformly from [2M, 150]. We generated each task’s utilization uniformly following procedures

from [Emberson et al., 2010]. We chose each task’s period randomly from [3, 33]ms (short), [10, 100]ms

(moderate), or [50, 500]ms (long). We set each task’s WCET Ci to Ti · ui rounded to the next microsecond.

We considered {M/4,M/2,M, 2M} number of shared resources. For each τi and resource ℓq, we

selected τi to access resource ℓq with probability pacc ∈ {0.1, 0.25, 0.5}. If so selected, τi was defined to

access ℓq via N q
i ∈ {1, 2, . . . , 5} requests. For each N q

i > 0, we chose the maximum request length Lq
i

randomly from three uniform distributions ranging over [1, 15]µs (short), [1, 100]µs (medium), or [5, 1280]µs

(long). A chosen Lq
i value was decreased accordingly if it caused the sum of all request length of τi to

exceed Ci. For each combination of M , normalized utilization, Ti, L
q
i , pacc, and nr, we generated 1,000 task

systems. We call each combination of these parameters a scenario.

Experiment 1. In our first experiment, we considered mutex sharing. Each task had a soft timing constraint,

meaning that it was deemed schedulable if its response time was bounded. We considered resource synchro-

nization under the OLP-F, the OMLP [Brandenburg and Anderson, 2010a], the C-OMLP [Brandenburg and

Anderson, 2011], the OMIP [Brandenburg, 2013a], and the FMLP [Block et al., 2007]. For the OLP-F, each

task system’s schedulability was tested under global G-FIFO scheduling [Leontyev and Anderson, 2007].

For the remaining protocols, s-oblivious schedulability tests were performed under G-EDF scheduling [Devi

and Anderson, 2008].6 For each scenario, we assessed acceptance ratios, which give the percentage of task

6The same schedulability test also applies for a wider class of global schedulers including G-FIFO.

189

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

OMLP
COMLP
OMIP
FMLP
OLPF

(a) Experiment 1 with moderate periods, medium requests, pacc = 0.1,
nr =M/4.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

OMLP
COMLP
OMIP
FMLP
OLPF

(b) Experiment 1 with short periods, short requests, pacc = 0.25, nr =
M/2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

OMLP
COMLP
OMIP
FMLP
OLPF

(c) Experiment 1 with moderate periods, long requests, pacc = 0.1, and
nr =M/4.

Figure 5.10: Experiment 1 results.

systems that were schedulable under each locking protocol. We present a representative selection of our

results in Figure 5.10.

190

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
CRW-OMLP
RW-OLPF
OLPF

(a) Experiment 2 with long periods, medium requests, pacc = 0.2,
pwrite = 0.7, nr =M .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

CRW-OMLP
RW-OLPF
OLPF

(b) Experiment 2 with long periods, long requests, pacc = 0.5, pwrite =
0.1, nr =M .

Figure 5.11: Experiment 2 results.

Observation 5.1. The average improvement under the OLP-F over the OMLP, the C-OMLP, the OMIP,

and the FMLP was 20.2%, 14.9%, 16.4%, and 27.5%, respectively.

This can be seen in insets (a)–(c) of Figure 5.10. Unsurprisingly, schedulability improved under the

OLP-F because of lower pi-blocking compared to the other protocols. In some cases, as depicted in

Figure 5.10(c), all protocols had similar schedulability. This can occur when the number of request-issuing

jobs for each resource is small (e.g., fewer than the number of processors), in which case all protocols have

similar pi-blocking bounds.

Experiment 2. This experiment pertains to RW sharing. To generate task systems, we used an additional

parameter pwrite ∈ {0.1, 0.2, 0.3, 0.5, 0.7}. We defined each resource access to be a write (resp., read)

access with probability pwrite (resp., 1− pwrite). In this experiment, we considered SRT scheduling with

191

resource synchronization under the RW-OLP-F, the CRW-OMLP [Brandenburg and Anderson, 2011], and

the OLP-F. Each task system’s schedulability was tested under global G-FIFO scheduling when the OLP-F

and the RW-OLP-F were employed, and under global EDF scheduling otherwise. We have the following

observation.

Observation 5.2. The RW-OLP-F improved schedulability over the CRW-OMLP across all scenarios. The

RW-OLP-F had less schedulability than the OLP-F when write accesses were more frequent, i.e., high

pwrite values.

This can be seen in insets (a) and (b) of Figure 5.11. The improved pi-blocking bound enabled higher

schedulability under the RW-OLP-F. The RW-OLP-F had better or equal schedulability than the OLP-F

across 90% of the total scenarios. Since the RW-OLP-F has higher write request blocking compared to the

OLP-F (which does not have optimal read request blocking), the OLP-F had better schedulability than the

RW-OLP-F when pwrite values were high, e.g., pwrite = 0.7.

Experiment 3. In this experiment, we considered HRT scheduling under mutex locks. For each task τi, we

randomly chose a relative deadline between [Ti, 2Ti]. We considered partitioned scheduling because of the

lack of HRT schedulability tests for global G-FIFO scheduling. We used the worst-fit bin-packing heuristic to

partition each task system. We compared schedulability under the OLP-F and partitioned G-FIFO scheduling

with the partitioned OMLP (the C-OMLP with c = 1) and partitioned EDF scheduling.

Observation 5.3. The partitioned OMLP had better schedulability compared to the OLP-F .

This can be seen in Figure 5.12. Despite having lower pi-blocking and bounded response times,

the partitioned OMLP enabled better schedulability because of the optimality of uniprocessor EDF in

scheduling HRT workloads. Note that, unlike for EDF, the employed G-FIFO schedulability test was

non-exact [Bedarkar et al., 2022].

5.5 Chapter Summary

In this chapter, we have closed a long-standing open problem concerning pi-blocking optimality. In

particular, we have presented lower-bound results showing that the factor of two present in the pi-blocking

bounds of most real-time multiprocessor mutex protocols that are asymptotically optimal under s-oblivious

analysis is fundamental when non-FIFO JLFP scheduling is used. In presenting these results, we have

192

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

COMLP
OLPF

(a) Experiment 3 with long periods, medium requests, pacc = 0.5,
nr =M/4.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

COMLP
OLPF

(b) Experiment 3 with long periods, short requests, pacc = 0.1, nr =
2M .

Figure 5.12: Experiment 3 results.

assumed global scheduling. As global scheduling is a special case of clustered scheduling, our results are

applicable to locking protocols that target clustered scheduling as well.

For clustered FIFO scheduling, we have presented optimal suspension-based multiprocessor locking

protocols for mutex and k-exclusion, and an almost-optimal protocol for RW synchronization. In particular,

we have shown that the s-oblivious lower bound of M − 1 request lengths for mutex locks is indeed tight

under FIFO scheduling. We have also provided s-oblivious lower-bound results on read-request blocking for

RW locks.

193

CHAPTER 6: SOFT REAL-TIME SCHEDULING OF GANG TASKS1

In this chapter, we consider the SRT scheduling of rigid gang tasks on identical multiprocessors. Such

tasks consist of multiple threads that are co-scheduled. These co-scheduling constraints can cause a system to

have idle processors even when a task is ready to execute, complicating the design and analysis of scheduling

algorithms for rigid gang tasks. For SRT gang scheduling, this becomes even more complicated, as multiple

jobs of a task can be present concurrently.

Consequently, the lone work on SRT gang scheduling [Dong et al., 2021] gives a sufficient condition

for SRT-schedulability for gang tasks under G-EDF scheduling. Thus, the exact SRT-feasibility condition

is unknown for gang tasks (unlike for sequential and DAG tasks). Motivated by this, we consider the

SRT-feasibility problem for preemptive gang scheduling, which asks whether a given gang task system

can be scheduled such that each instance of a task has bounded response time. We give necessary and

sufficient conditions for SRT feasibility, based on which we show that the SRT-feasibility problem is NP-hard.

To the best of our knowledge, this is the first intractability result regarding SRT scheduling where only

bounded response times are required. Furthermore, we give server-based scheduling policies for gang tasks

and corresponding schedulability conditions for bounded response times. We also show that G-EDF is

non-optimal in scheduling SRT gang tasks and give an improved condition for achieving bounded response

times under G-EDF.

Organization. In the rest of this chapter, we first cover needed background (Section 6.1). Next, we discuss the

SRT-feasibility of gang tasks (Section 6.2) and introduce our server-based scheduling policies (Section 6.3).

Then, we discuss G-EDF scheduling of gang tasks (Section 6.4). Finally, we present our experiments

(Section 6.5), and conclude with a summary (Section 6.6).

1 Contents of this chapter previously appeared in preliminary form in the following paper:

Ahmed, S. and Anderson, J. (2023b), Soft Real-Time Gang Scheduling, Proceedings of the 44th IEEE Real-Time
Systems Symposium, pages 331-343.

194

6.1 System Model

We consider a system Γ of N sporadic rigid gang tasks that are globally scheduled on M identical

processors. Each gang task τi releases a potentially infinite sequence of jobs τi,1, τi,2, Each sporadic

(resp., periodic) gang task τi has a period Ti, which is the minimum (resp., exact) separation time between

any two consecutive job releases of τi. The relative deadline of τi is denoted by Di. We consider implicit

deadlines, meaning thatDi = Ti holds for each τi. However, deadlines are soft, meaning that jobs are allowed

to miss their deadlines. Task τi has a WCET of Ci. Each task τi has a degree of parallelism mi, which is

the number of simultaneously available processors required to execute any job of τi. Thus, the worst-case

execution requirement (WCER) of each job of τi can be represented by a rectangle of area mi × Ci in a

schedule. We let Cmax = maxi{Ci}, Cmin = mini{Ci}, and Tmax = maxi{Ti}. Jobs of τi are sequential,

meaning that no two jobs of τi can execute in parallel. We also assume that jobs are preemptive.

Note the difference between the degree of parallelism mi of a gang task and the parallelization level Pi

of a task under the rp model. The former pertains to the number of processors required by a single job of a

gang task, while the latter refers to how many successive jobs of a task are allowed to execute in parallel

under the rp model. In this chapter, we assume that such concurrent execution of successive jobs of a task is

prohibited, i.e., a job cannot commence execution until all prior jobs of the task finish execution. Thus, for

each task τi, Pi = 1 holds.

The utilization of τi is ui = (Ci ×mi)/Ti. Note that ui can exceed 1.0 for a gang task τi. The total

utilization of task system Γ is Utot =
∑N

i=1 ui. The horizontal utilization σi of τi is Ci/Ti. The hyperperiod

H is the LCM of all periods. We let hi denote H/Ti.

Similar to sequential tasks, a periodic gang task τi has an offset Φi that denotes the release time of

the first job of τi. For brevity, we denote a periodic (resp., sporadic) gang task by (Φi, Ti, Ci,mi) (resp.,

(Ti, Ci,mi)). We summarize all introduced notation in Table 6.1.

Parallelism-induced idleness. When scheduling gang tasks, parallelism-induced idleness may occur. For-

mally, such idleness is defined as follows.

Definition 6.1. A time instant t is parallelism-induced idle if there is an idle processor at time t, and a job

τi,j is pending but unscheduled at time t due to the lack of mi available processors. ◀

The following example illustrates parallelism-induced idleness.

195

Table 6.1: Notation summary for Chapter 6.

Symbol Meaning

Γ Task system

N Number of tasks

M Number of processors

ΓkH Definition 6.2

τi ith task

Ti Period of τi

Ci WCET of τi

Φi Offset of τi

ui Utilization of τi

mi Degree of parallelism of τi

SH
i Server associated with τi

Utot Utilization of Γ

Tmax maxi{Ti}

Cmax maxi{Ci}

Cmin mini{Ci}

H Hyperperiod

hi H/Ti

τi,j jth job of τi

r(τi,j) Release time of τi,j

f(τi,j) Completion time of τi,j

d(τi,j) PP of τi,j

(Φi, Ti, Ci,mi) Periodic task τi

(Ti, Ci,mi) Sporadic task τi

S An arbitrary schedule

I Ideal schedule

A(τi, t, t
′,S) Allocation of τi in S

A(Γ, t, t′,S) Allocation of Γ in S

lag(τi, t,S) lag of τi in S (6.3)

LAG(τi, t,S) LAG of Γ in S (6.5)

Ub Definition 6.5

196

Four
processors

Time0 4 80 4 8

τ1 τ2

Figure 6.1: Two gang tasks on four processors. The number inside each execution block denotes the degree
of parallelism. Both tasks release a job at time 0.

Example 6.1. In Figure 6.1, there is an idle processor during the time interval [0, 2). Although τ2 has a

pending job during this interval, it cannot execute, as the number of available processors is less than m2.

Thus, there is parallelism-induced idleness during [0, 2). ◀

A sporadic gang task system can have many instantiations where release times and execution times of all

jobs are specified. Recall from Chapter 1 that

SRT-feasibility of Γ⇐⇒ Bounded response times for all instantiations of Γ by some scheduler. (6.1)

6.2 SRT-Feasibility of Gang Tasks

In this section, we consider the problem of determining the SRT-feasibility of a gang task system. In this

section, we assume the following, which we justify in Lemma 6.2 in the context of SRT-feasibility.

Assumption 6.1. Each job of any task τi executes for its WCET Ci.

Lemma 6.1. If all jobs of an instantiation Γc of Γ have bounded response times under a scheduler when

Assumption 6.1 is satisfied, then for any instantiation Γ′
c that differs from Γc only in job execution times, all

jobs have bounded response times under some scheduler.

Proof. Let S be a schedule of Γc in which all jobs have bounded response times. Using S, we construct a

schedule S ′ of Γ′
c, in which all jobs of Γ′

c have bounded response times. In S ′, every job τi,j is scheduled

whenever it is scheduled in S until it completes in S ′. If a job executes for less than its WCET and finishes at

time t′ in S ′, then S ′ keeps the processors the job occupies in S idle at time instants after t′. Thus, each job

has a bounded response time, as it finishes no later in S ′ than in S.

Lemma 6.2. If every instantiation of Γ satisfying Assumption 6.1 has bounded response times under some

algorithm, then Γ is SRT-feasible.

197

Proof. Assume that Γ is not SRT-feasible. Then, there exists an instantiation Γ′
c of Γ that is not SRT-

schedulable by any algorithm (by (6.1)). By the assumption of the lemma, Γ′
c does not satisfy Assumption 6.1.

Let Γc be the instantiation of Γ such that Γc satisfies Assumption 6.1, and it only differs from Γ′
c in terms

of job execution times. Since Γc satisfies Assumption 6.1, it is SRT-schedulable by some algorithm (by the

lemma’s assumption). Thus, by Lemma 6.1, Γ′
c is SRT-schedulable by some algorithm, a contradiction.

6.2.1 Necessary Condition for SRT-Feasibility

We give a necessary condition for SRT-feasibility in Lemma 6.3, which utilizes the following definition.

Definition 6.2. Given the sporadic task system Γ = {τ1, τ2, . . . , τN}, let ΓkH = {τkH1 , τkH2 , . . . , τkHN } be a

set of implicit-deadline periodic gang tasks such that k is a positive integer and τkHi = (0, kH, khiCi,mi).◀

Lemma 6.3. If Γ is SRT-feasible, then there is a positive integer k such that the periodic task system ΓkH is

HRT-feasible.

Proof. Let Γc be an instantiation of Γ such that each task periodically releases its jobs starting from time 0.

Since Γ is SRT-feasible, there is a schedule S of Γc, in which each task τi has bounded tardiness (and response

times). Let xi be τi’s tardiness in S . Let ei(t) ≥ 0 be the remaining execution time of all jobs of τi released

before time t in S.

We now consider the ei(t) values at times 0, H, 2H, In Γc, each task τi releases a job at time t ∈

{0, H, 2H, . . .}. By the definition of ei(t), at any time t ∈ {0, H, 2H, . . .}, ei(t) does not include the

execution time of τi’s job released at time t. Since τi’s tardiness is xi, at any time t ∈ {0, H, 2H, . . .}, τi’s

jobs released before time t have at most xi time units of execution remaining at time t. (Note that τi’s jobs

must execute in sequence, so if its tardiness is xi, then all of its tardy jobs at a hyperperiod boundary must be

complete within xi time units beyond that boundary.) Thus, at any time t ∈ {0, H, 2H, . . .}, 0 ≤ ei(t) ≤ xi

holds for all i.

Therefore, since ei(t) is an integer, ei(t) can take at most xi + 1 distinct values at any time t ∈

{0, H, 2H, . . .}. Thus, the tuple (e1(t), e2(t), . . . , en(t)) takes on one of X =
∏N

i=1(xi + 1) distinct values

at any time t ∈ {0, H, 2H, . . .}. Therefore, there must be a pair of integers a < b ≤ X + 1 such that

(e1(aH), e2(aH), . . . , en(aH)) = (e1(bH), e2(bH), . . . , en(bH)) holds. Let k = b− a.

Since τi releases jobs periodically in Γc, it releases (b − a) · HTi
= khi jobs in [aH, bH). Thus, by

Assumption 6.1, during [aH, bH), τi executes for ei(aH) + khiCi − ei(bH) = khiCi time units. Let Sk be

198

the portion of schedule S during [aH, bH). Using Sk, we can create an HRT-feasible schedule SkH of ΓkH .

SkH mimics Sk with the exception that τkHi executes in SkH instead of τi whenever τi is scheduled in Sk.

Since every task τi is scheduled for khiCi time units in Sk, τkHi is scheduled for its WCET in SkH . Thus,

there exists an HRT-feasible schedule of ΓkH . Note that tasks in ΓkH have implicit deadlines with the same

period, and release their first jobs synchronously at time 0.

6.2.2 Sufficient Condition for SRT-Feasibility

In this section, we give a sufficient SRT-feasibility condition for gang tasks as shown in Lemma 6.4.

Lemma 6.4. If there is a periodic task system ΓkH , as defined in Definition 6.2, that is HRT-feasible, then

the corresponding sporadic task system Γ is SRT-feasible.

Note that we do not require the same value of k in both Lemmas 6.3 and 6.4. To prove Lemma 6.4, we

give a server-based scheduling policy for Γ based on an HRT-feasible schedule of ΓH . For ease of notation,

we prove the lemma for ΓH . We begin by defining reservation servers. Recall that a similar concept was

introduced in Chapter 4 for DAG tasks.

Reservation servers. For each task τi, we define a periodic reservation server SH
i . We denote the set of

all servers as ΓH
s . Each server SH

i has a period TH
i = H , a horizontal budget CH

i = hiCi, and a degree of

parallelism of mH
i = mi. The total budget, also called the budget, of SH

i is miC
H
i . Thus, by Definition 6.2

(with k = 1), SH
i and τHi have the same period and degree of parallelism.

Replenishment Rule. For any non-negative integer ℓ, the budget of SH
i is replenished to miC

H
i

at time ℓH .

Consumption Rule. SH
i consumes budget at the rate of mi execution units per unit of time

when it is scheduled until its budget is exhausted.

Scheduling servers. Servers are scheduled according to the following rule.

P. Let SH be an HRT schedule of ΓH where each job of any task ΓH executes for its WCET. The servers

in ΓH
s are scheduled according to SH , i.e., server SH

i is scheduled at time t if and only if τHi is

scheduled at time t in SH .

199

Time

3 3

2 2

τ2,1 τ2,2 τ2,3 τ2,4

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5τ1

SH
1

τ2

SH
2

0 5 10

Budget
of SH

1

6

Release Deadline Completion

Task execution Server execution

Figure 6.2: Example server-based scheduling. The numbers inside server execution boxes denote mi values.

Example 6.2. Assume that Γ consists of two gang tasks τ1 = (2, 1, 2) and τ2 = (3, 1, 3) that are scheduled

on a four-processor platform. Since the task periods are 2.0 and 3.0 time units, we have H = 6, h1 =

6/2 = 3, and h2 = 6/3 = 2. Thus, by Definition 6.2, ΓH consists of periodic tasks τH1 = (0, 6, 3, 2) and

τH2 = (0, 6, 2, 3). As shown in Figure 6.2, there is an HRT-feasible schedule of ΓH , which, by Rule P, is also

the server schedule of SH
1 and SH

2 .

At time 0, the budget of SH
1 is replenished to m2C

H
2 = 2 · 3 = 6. During the time interval [0, 3), SH

1 is

scheduled; hence, its budget is consumed at the rate of 2.0 units per unit of time during [0, 3). Thus, SH
1 ’s

budget is exhausted at time 3. ◀

For ease of notation, we also denote the server schedule by SH . By Rule P, we have the following lemma,

which shows that SH
i has sufficient budget to be scheduled whenever τHi is scheduled in SH .

Lemma 6.5. If τHi is scheduled in SH at time t, then SH
i has at least mi units of budget remaining at time t.

Proof. Assume that t is the first time instant when SH
i has less than mi units of remaining budget, but τHi

is scheduled. Let ℓ be the non-negative integer such that t ∈ [ℓH, (ℓ+ 1)H). By the Replenishment Rule,

SH
i ’s budget is miC

H
i at time ℓH . By the Consumption Rule, SH

i ’s budget is consumed at the rate of mi

units per unit of time when it is scheduled. Thus, the remaining budget at time t is an integer multiple of mi.

Therefore, at time t, SH
i ’s budget is at most 0.

200

By the Consumption Rule, SH
i is scheduled for at least miC

H
i

mi
= CH

i time units during [ℓH, t). Thus, by

Rule P, τHi is scheduled for at least CH
i time units during [ℓH, t). By Definition 6.2, τHi ∈ ΓH releases its

(ℓ+ 1)st job at time ℓH . Thus, by the definition of SH , the (ℓ+ 1)st job of τHi completes by time t, as τHi

is scheduled for at least CH
i time units during [ℓH, t). Since t < (ℓ+ 1)H , there is no ready job of τHi at

time t. Thus, τHi cannot be scheduled at time t. Contradiction.

We now prove the following lemma, which we will later use to prove Lemma 6.4.

Lemma 6.6. For any non-negative integer ℓ, server SH
i is scheduled for CH

i = hiCi time units during any

time interval [ℓH, (ℓ+ 1)H) in SH .

Proof. By Lemma 6.5, SH
i has at least mi units of remaining budget at any time when τHi is scheduled.

Therefore, SH
i can be scheduled whenever τHi is scheduled.

By Definition 6.2, τHi ∈ ΓH releases its (ℓ + 1)st job at time ℓH . By the definition of SH and

Definition 6.2, the (ℓ+ 1)st job of τHi is scheduled for its WCET of hiCi time units and completes by time

(ℓ+ 1)H in SH . Thus, SH
i is scheduled for hiCi time units during [ℓH, (ℓ+ 1)H) in SH .

Scheduling tasks on servers. Jobs of the sporadic tasks in Γ are scheduled on servers via the following

rules.

R1. Jobs of τi are scheduled on server jobs of SH
i .

R2. If server SH
i is scheduled and job τi,j is ready at time t, then τi,j is scheduled on the processors on

which SH
i is scheduled at time t.

Example 6.2 (Continued). Consider the scheduling of τ1 and τ2 in Figure 6.2. At time 0, τ1 has a ready job

τ1,1 and SH
1 is scheduled. Thus, by Rule R2, τ1,1 is scheduled at time 0. At time 1, there is no pending job of

task τ1. Thus, despite SH
1 being scheduled at time 1, no job of τ1 is scheduled at time 1. ◀

We now show that each task τi has a bounded response time if SH is an HRT-feasible schedule of ΓH .

We first show, in Lemma 6.7, that the jobs released during (ℓH, (ℓ + 1)H] complete execution by time

(ℓ+ 2)H . Using this lemma, we will then derive a response-time bound of τi in Lemmas 6.8 and 6.9.

Lemma 6.7. If servers are scheduled according to Rule P and tasks are scheduled according to Rules R1

and R2, then, for any non-negative integer ℓ, any job τi,j released during (ℓH, (ℓ+1)H] completes execution

at or before time (ℓ+ 2)H .

201

Proof. Assume otherwise. Let ℓ be the smallest non-negative integer such that there is a job τi,j released

during (ℓH, (ℓ + 1)H] that completes execution after time (ℓ + 2)H . Thus, any job released during time

interval ((ℓ − 1)H, ℓH] completes execution at or before time (ℓ + 1)H . Therefore, no job released at or

before time ℓH is pending at or after time (ℓ+ 1)H .

Let ei be the remaining execution time of τi’s jobs that are released during (ℓH, (ℓ+1)H] at time (ℓ+1)H .

Since τi releases its job sporadically, at most H/Ti = hi jobs of τi are released during (ℓH, (ℓ + 1)H].

Therefore, ei ≤ hiCi. By Lemma 6.6, SH
i is scheduled for hiCi time units during [(ℓ + 1)H, (ℓ + 2)H).

Since jobs of τi execute sequentially and L ≤ hiCi, by Rule R2, all job released during (ℓH, (ℓ+ 1)H] must

complete execution by time (ℓ+ 2)H , a contradiction.

Lemma 6.8. Let τi,j be the qth job of τi among τi’s jobs that are released during (ℓH, (ℓ + 1)H] where

q ≤ hi and ℓ is a non-negative integer. If servers are scheduled according to Rule P and tasks are scheduled

according to Rules R1 and R2, then τi,j’s response time is at most 2H − (hi − q)Ci − (q − 1)Ti.

Proof. We first prove that SH
i is scheduled for at least qCi time units during [(ℓ+1)H, (ℓ+2)H−(hi−q)Ci).

Assume otherwise. During [(ℓ+ 2)H − (hi − q)Ci, (ℓ+ 2)H), SH
i can be scheduled for at most (hi − q)Ci

time units. Thus, SH
i is scheduled during [(ℓ+ 1)H, (ℓ+ 2)H) for less than qCi + (hi − q)Ci = hiCi time

units, contradicting Lemma 6.6.

By Lemma 6.7, no job released at or before time ℓH is pending after time (ℓ+ 1)H . The total execution

time of the first q jobs of τi released during (ℓH, (ℓ + 1)H] is at most qCi. Therefore, by Rule R2, τi,j

completes execution at or before time (ℓ+ 2)H − (hi − q)Ci, as SH
i is scheduled for at least qCi time units

during [(ℓ+ 1)H, (ℓ+ 2)H − (hi − q)Ci).

Since τi releases jobs sporadically, we have ri,j ≥ ℓH + (q − 1)Ti. Therefore, τi,j’s response time is at

most (ℓ+ 2)H − (hi − q)Ci − ℓH − (q − 1)Ti = 2H − (hi − q)Ci − (q − 1)Ti time units.

Lemma 6.9. If servers are scheduled according to Rule P and tasks are scheduled according to Rules R1

and R2, then task τi’s response time is at most 2H − (hi − 1)Ci.

Proof. Let τi,j be an arbitrary job of τi. Assume that τi,j is released during (ℓH, (ℓ + 1)H] where ℓ is a

non-negative integer and τi,j is the qth job among τi’s jobs that are released during (ℓH, (ℓ + 1)H]. By

Lemma 6.8, τi,j’s response time is at most 2H−(hi−q)Ci−(q−1)Ti = 2H−(hi−1)Ci+(q−1)(Ci−Ti).

Since q ≥ 1 and Ci ≤ Ti, τi,j’s response time is at most 2H − (hi − 1)Ci. Thus, the lemma holds.

202

By Lemma 6.9, Γ is SRT-feasible. This proves Lemma 6.4.

The response-time bound in Lemma 6.9 can be exponential with respect to the task count. However,

systems with pseudo-harmonic periods, where H = Tmax holds, the response-time bound is less than 2Tmax.

We now prove the following theorem using the conditions derived in Sections 6.2.1 and 6.2.2.

Theorem 6.1. Determining the SRT-feasibility of a set of gang tasks is NP-hard.

Proof. The proof is via reduction from the partition problem.

The partition problem. Given a set A = {a1, a2, · · · , ap} of positive integers with
∑p

i=1 ai = 2B, the

partition problem asks whether A can be partitioned into two equal-sum subsets A1 and A2, i.e.,
∑

a∈A1
=∑

a∈A2
= B.

Reduction. Let A = {a1, a2, · · · , ap} with
∑p

i=1 ai = 2B be an arbitrary instance of the partition problem.

We construct an instance of the SRT-feasibility problem as follows. Let Γ be a set of p sporadic gang tasks

to be scheduled on B processors. Task τi ∈ Γ has a period of 2.0 time units, a WCET of 1.0 time unit, and

mi = ai.

We now prove that A can be partitioned into two equal-sum subsets if and only if there exists a schedule

S of Γ on B processors where each task has a bounded response time.

Sufficiency. Assume that A can be partitioned into two equal-sum subsets A1 and A2. We will prove

that ΓH is HRT-feasible, which, by Lemma 6.4, implies that each task in Γ has a bounded response time

under some scheduling algorithm. Since each task’s period is 2.0 time units, we have H = 2.0. Therefore,

by Definition 6.2, ΓH consists of p tasks such that τHi = (0, 2, 1,mi). Since tasks in ΓH are implicit-

deadline periodic tasks, it is sufficient to show that there exists a schedule such that the first jobs of all

tasks in ΓH complete by time 2.0. We construct such an HRT-feasible schedule SH as follows. SH

schedules tasks corresponding to subset A1 (resp., A2) during time interval [0, 1) (resp., [1, 2)). Since∑
ai∈A1

ai =
∑

ai∈A2
ai = B and mi = ai for all i, exactly B processors execute jobs of ΓH at any time

during [0, 2). Since A1 ∪A2 = A and A1 ∩A2 = ∅, each task in ΓH is scheduled for exactly 1.0 time unit

in SH . Thus, in SH , the first jobs of all tasks in ΓH complete by time 2.0.

Necessity. Assume that there is a schedule S of Γ on B processors where each task in Γ has a bounded

response time. Then, by Lemma 6.3 and Definition 6.2, there exists a positive integer k and an HRT-feasible

task system ΓkH consisting of tasks τi = (0, 2k, k,mi). Since tasks in ΓkH are periodic and have implicit

203

deadlines, there is a schedule SkH of ΓkH on B processors where the first jobs of all tasks in ΓkH complete

at or before time 2k, i.e., each task executes for k time units during time interval [0, 2k).

We first show that there is no idle processor in SkH at any time instant during [0, 2k). Assume otherwise.

Since there is at least one idle processor during a unit-sized time interval, the total execution of tasks

in ΓkH is at most 2kB − 1 units. The total execution requirement of the first jobs of tasks in ΓkH is∑p
i=1 k · mi = k

∑p
i=1mi = k

∑p
i=1 ai = 2kB. Thus, at least one task’s first job does not complete

execution by time 2k in SkH and SkH cannot be an HRT-feasible schedule of ΓkH , a contradiction.

We now show that there exists a partition of A into two equal-sum subsets. Let Q be the set of tasks that

are scheduled during [0, 1) in SkH . Since all B processors are busy during [0, 1), we have
∑

τkHi ∈Qmi = B.

Let A1 be the subset of A that consists of elements ai corresponding to tasks in Q. Thus,
∑

ai∈A1
ai = B.

Since
∑

ai∈A ai = 2B, we have
∑

ai∈A\A1
ai = B. Thus, there exists a partition of two equal-sum subsets

of A.

6.3 Schedulability Under Server-Based Scheduling

In the previous section, we gave a server-based approach for scheduling gang tasks. We showed that

if servers can be scheduled to meet their deadlines, then the gang tasks in Γ have bounded response times

under the server-based scheduling policy. However, we relied on an HRT schedule of the servers (Rule P).

Unfortunately, obtaining such a schedule is NP-hard in the strong sense [Kubale, 1987]. In this section,

we provide some scheduling policies and corresponding exact HRT-schedulability tests for servers, which

provide a sufficient SRT-feasibility tests for gang tasks according to Lemma 6.4.

Referring to the server-based scheme used to prove this lemma, it is important to note that the HRT-

schedulability of the servers in ΓH
s under a given scheduling policy can be different from HRT-schedulability

of the tasks in ΓH under that policy. This is because a server SH
i is required to be scheduled for exactly CH

i

time units during [0, H), as this ensures that τi receives a sufficient processor allocation during [0, H). In

contrast, for ΓH , τHi can execute for less than its WCET CH
i , which can cause timing anomalies by causing

some jobs to miss their deadlines. Thus, for servers, only the case where SH
i is scheduled for exactly CH

i

time units during [0, H) needs to be considered, which may not be sufficient for the HRT-schedulability of

ΓH under the same scheduling.

204

Algorithm 6.1 FP-scheduling of servers.
Variables:

O : A priority ordering
Sched(t) : Set of jobs to be scheduled at time t

1: procedure FP
2: M ′ ←M
3: Order servers according to O
4: for each SH

i ∈ ΓH do
5: if mi ≤M ′ and SH

i ’s remaining budget > 0 then
6: Sched(t)← Sched(t) ∪ {SH

i }
7: M ′ ←M ′ −mi

6.3.1 FP Scheduling of Servers

Under FP scheduling, each server has a fixed priority. At any time instant, the highest-priority servers

that can execute together (without requiring more than M processors) are scheduled as in Algorithm 6.1.

As all servers are replenished synchronously every H time units, G-FIFO and implicit-deadline G-EDF

scheduling (each with consistent tie-breaking) are equivalent to FP when scheduling servers.

Determining server priorities. We consider the following heuristics for determining server priorities.

• Parallelism-decreasing order. SH
i has higher priority than SH

j if mi ≥ mj , with ties being broken

consistently.

• Utilization-decreasing order. SH
i has higher priority than SH

j if ui ≥ uj , with ties being broken

consistently.

Schedulability test. The HRT-schedulability of the servers under FP scheduling can be determined by

simulating the server schedule over the time interval [0, H). The time complexity for this is polynomial

with respect to the task and processor counts. This is because no server is replenished within (0, H), so the

servers are scheduled non-preemptively. Thus, scheduling decisions are taken only at time 0 and when a

server exhausts its budget. Hence, there are O(N) time instants when scheduling decisions are made. Further,

each such decision is of polynomial time complexity.

6.3.2 Least-Laxity-First Scheduling of Servers

Under least-laxity (LLF) scheduling, servers with smaller laxity have higher priorities. A server’s laxity

corresponds to the amount of time it can be delayed without violating its deadline. Formally, for a server

205

SH
i , letting CH

i (t) (resp., DH
i (t)) to denote its remaining budget (resp., remaining time to its deadline) at

time t, its laxity LH
i (t) at time t is LH

i (t) = DH
i (t) − CH

i (t). Thus, LLF scheduling also functions like

Algorithm 6.1 with O denoting LLF ordering.

Schedulability test. Similar to FP scheduling, the HRT-schedulability of servers under LLF scheduling can

be checked by simulating the server schedule during [0, H). However, unlike FP scheduling, the simulation

may take O(H) time, as server priorities may change during runtime.

6.3.3 ILP-Based Scheduling of Servers

Finally, we show that a server schedule can be obtained by solving an integer linear program (ILP),

specified as follows.

Variables. For each server SH
i , we define H variables xHi,1, x

H
i,2, . . . , x

H
i,H . xHi,t is 1 if SH

i is scheduled during

time interval [t− 1, t) and 0 otherwise.

Constraint 1. SH
i is scheduled for hiCi time units (its horizontal budget—see the discussion after Lemma 6.4)

in [0, H):

∀i ::
H∑
t=1

xHi,t = hiCi.

Constraint 2. At most M processors are occupied at any time:

∀t ::
n∑

i=1

mi · xHi,t ≤M.

Note that mi is a constant.

Translating from a valid assignment of values to the xHi,t variables to a correct server schedule is

straightforward. Note that this method provides an exact sever feasibility test. Unfortunately, it has exponential

time complexity.

6.4 Schedulability Under G-EDF

In this section, we consider the preemptive scheduling of gang tasks by G-EDF, which functions as

shown in Algorithm 6.2. Under G-EDF, ready jobs with earlier deadlines have higher priorities. We assume

that deadline ties are broken arbitrarily but consistently (e.g., by task index). When considering a ready job

206

Algorithm 6.2 G-EDF job selection policy.
Variables:

Ready(t) : Set of ready jobs at time t
Sched(t) : Set of jobs to be scheduled at time t

1: procedure G-EDF
2: M ′ ←M
3: Order jobs in Ready(t) in deadline-increasing order
4: for each τi,j ∈ Ready(t) do
5: if mi ≤M ′ then
6: Sched(t)← Sched(t) ∪ {τi,j}
7: M ′ ←M ′ −mi

τi,j under G-EDF, if mi is larger than the number of remaining available processors, then τi,j is skipped

(line 5 in Algorithm 6.2). Note that, for scheduling sequential tasks, such scenarios do not arise.

6.4.1 Non-SRT-Optimality Under G-EDF

In this section, we show that G-EDF is not optimal in scheduling SRT gang tasks.

Theorem 6.2. G-EDF is not SRT-optimal for scheduling gang tasks.

Proof. We give a gang task system and a release sequence for it where a task has an unbounded response time

under G-EDF. Let Γ be a gang task system consisting of seven tasks that are scheduled on six processors.

Each task τi has a WCET of 7.0 time units and a period of 21.0 time units. Let m1 = m3 = m5 = 2 and

m2 = m4 = m6 = m7 = 3.

Feasibility. Consider ΓH from Definition 6.2. Since all task periods are 21, each τHi has the same period,

WCET, and degree of parallelism as τi. Figure 6.3 shows an HRT-feasible schedule of ΓH . Thus, by

Lemma 6.4, Γ is SRT-feasible.

Unschedulability under G-EDF. Figure 6.4 shows a G-EDF schedule for Γ where each task τi releases its

first job at time i− 1 and subsequent jobs periodically, i.e., its jth job is released at time i− 1 + (j − 1)Ti.

The G-EDF prioritization policy causes at least one idle processor during [0, 21), as a task with mi = 3 is

scheduled alongside a task with mi = 2. A similar scenario occurs during the time interval [22, 43). This

causes the response time of the second job of each task to be larger than its first job. At times 49 and 50, the

third jobs of τ1 and τ2, respectively, are scheduled. Thus, the schedule during time [1, 50) starts to repeat at

time 50, causing each task’s response times to grow unboundedly.

207

Time

2

2

2

3

3

3

3

τH1

τH3

τH5

τH7

τH2

τH4

τH6

0 5 10 15 20 25

Release Deadline Completion Task execution

Figure 6.3: An HRT-feasible schedule of ΓH in Theorem 6.2. The numbers inside execution boxes denote mi

values.

Time

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

Deadline miss

τ1

τ3

τ5

τ7

τ2

τ4

τ6

0 5 10 15 20 25 30 35 40 45 50 55 60

Release Deadline Completion Task execution

Figure 6.4: G-EDF schedule of Γ in Theorem 6.2. The numbers inside execution boxes denote mi values.

Since G-EDF cannot ensure bounded response times for an SRT-feasible task system, it is not SRT-

optimal for gang tasks by Definition 1.3.

Note that, according to the proof of Theorem 6.2, G-EDF is not SRT-optimal for gang scheduling even

when each task’s mi value is at most three. Since all task deadlines are the same in the system considered in

208

Theorem 6.2, the same proof also shows the non-SRT-optimality of G-FIFO schedulers for scheduling gang

tasks.

6.4.2 A G-EDF Schedulability Test

We now give a schedulability test for G-EDF. Similar to Chapters 3 and 4, we use a lag-based reasoning

to derive our test.

Allocation. The cumulative processor capacity (as defined in Definition 3.1) allocated to a job τi,j , task

τi, task system Γ, and a set of jobs Ψ, in a schedule S over an interval [t, t′) is denoted by A(τi,j , t, t
′,S),

A(τi, t, t
′,S), A(Γ, t, t′,S), and A(Ψ, t, t′,S), respectively. Thus,

A(τi, t, t
′,S) =

∑
j

A(τi,j , t, t
′,S),

A(Γ, t, t′,S) =
N∑
i=1

A(τi, t, t
′,S),

and

A(Ψ, t, t′,S) =
∑

τi,j∈Ψ
A(τi,j , t, t

′,S).

Ideal schedule. Let π̂1, π̂2, . . . , π̂N be N processors with speeds u1, u2, . . . , uN , respectively. In an ideal

schedule I, each task τi is partitioned to execute on processor π̂i. Each job starts execution as soon as it is

released and completes execution by its deadline in I. For task τi (resp., task system Γ), A(τi, t, t′, I)) ≤

ui(t
′ − t) (resp., A(Γ, t, t′, I) ≤ Utot(t

′ − t)). In I, parallelism constraints of gang tasks may not be

maintained. Recall from Chapter 4 that precedence constraints were not maintained in the ideal schedule

defined for DAG tasks.

lag and LAG. Similar to Chapters 3 and 4, we now define lag and LAG. The lag of job τi,j at time t in a

schedule S is

lag(τi,j , t,S) = A(τi,j , 0, t, I)− A(τi,j , 0, t,S). (6.2)

The lag of a task τi at time t in a schedule S is

lag(τi, t,S) =
∑
j

lag(τi,j , t,S) = A(τi, 0, t, I)− A(τi, 0, t,S). (6.3)

209

Time

τ1 (rate: 15/8)

τ2 (rate: 20/10)

τ3 (rate: 14/12)

0 5 10 15

Release Deadline Completion Task execution

Figure 6.5: An ideal schedule.

Since lag(τi, 0,S) = 0, for t′ ≥ t we have

lag(τi, t
′,S) = lag(τi, t,S) + A(τi, t, t

′, I)− A(τi, t, t
′,S). (6.4)

The LAG of a task system Γ in a schedule S at time t is

LAG(Γ, t,S) =
∑
τi∈Γ

lag(τi, t,S) = A(Γ, 0, t, I)− A(Γ, 0, t,S). (6.5)

Similarly, the LAG of a set of jobs Ψ is

LAG(Ψ, t,S) =
∑

τi,j∈Ψ
lag(τi,j , t,S)

=
∑

τi,j∈Ψ
(A(τi,j , 0, t, I)− A(τi,j , 0, t,S)). (6.6)

Since LAG(Ψ, 0,S) = 0, for t′ ≥ t we have

LAG(Ψ, t′,S) = LAG(Ψ, t,S) + A(Ψ, t, t′, I)− A(Ψ, t, t′,S). (6.7)

Example 6.3. Consider three gang tasks τ1 = (8, 5, 3), τ2 = (10, 4, 5), and τ3 = (12, 7, 2) that are scheduled

on six processors. Figures 6.5 and 6.6 show an ideal schedule I and a G-EDF schedule S, respectively,

of these tasks. Since τ2’s utilization is (5 · 4)/10 = 20/10 = 2, it executes at a rate of 2.0 in I. Task

τ2 receives an allocation of 1 · 5 = 5 (resp., 6 · 2 = 12) units during [0, 6) in S (resp., I). Therefore,

lag(τ2, 6,S) = 12− 5 = 7. ◀

210

Time

3 3

5 5

2 2 2

τ1

τ2

τ3

0 5 10 15

Release Deadline Completion Task execution

Figure 6.6: A G-EDF schedule. The numbers inside execution boxes denote mi values.

We now define a notation for the maximum number of processors that can be idle due to parallelism-

induced idleness.

Definition 6.3. For a task τi, let ∆i denote the maximum possible number of idle processors at any time

instant when τi has a ready job that cannot execute. Let ∆max = maxi{∆i}. ◀

Example 6.4. Consider four gang tasks with m1 = 3,m2 = 4,m3 = 5, and m4 = 6 to be scheduled on ten

processors. If τ2 has a pending job at time t that cannot execute, then at least seven processors are busy at

time t. No combination of other tasks can occupy exactly seven processors. However, if τ1 and τ3 execute

on m1 +m3 = 8 processors at time t, then τ3 cannot execute at time t. Thus, the maximum number of idle

processors when τ3 cannot execute is ∆2 = 10− 8 = 2. ◀

Dong et al. gave an O(M2N) time dynamic-programming algorithm to compute the ∆i value of a

task [Dong et al., 2021]. Using ∆max, they established the following sufficient condition for bounded

response times of gang tasks under G-EDF, which is the only-known SRT-schedulability test for gang tasks

under G-EDF.

Theorem 6.3 ([Dong et al., 2021]). If Utot ≤M −∆max, then each task in Γ has a bounded response time

under G-EDF.

Consider the task system shown in Figure 6.1. Since M = 4, m1 = 3, and m2 = 2, we have ∆1 = 2

and ∆2 = 1. The total utilization of the task system is 3·2
8 + 2·6

8 = 18
8 = 2.25, which is larger than

M −∆max = 4− 2 = 2. Thus, the system is not SRT-schedulable under G-EDF by Theorem 6.3.

We now give an improved sufficient condition for the SRT-schedulability of gang tasks under G-EDF.

We first introduce some necessary terms.

211

Definition 6.4. Let Mp denote the minimum possible number of busy processors whenever at least p tasks in

Γ have pending jobs. ◀

Example 6.4 (Continued). Assume that at least three tasks have pending jobs at time t. With four tasks,

there are four possibilities of having three pending jobs at time t. Since m1 = 3, m2 = 4, m3 = 5, and

m4 = 6, if τ1, τ2, and τ3 have pending jobs at time t, then at least seven processors are busy among all ten

processors. Similarly, if τ1, τ2, and τ4 have pending jobs, then at least seven processors are busy. If τ1, τ3,

and τ4 have pending jobs, then at least eight processors are busy. Finally, if τ2, τ3, and τ4 have pending jobs,

then at least nine processors are busy. Thus, the minimum number of busy processors when at least three

tasks have pending jobs is M3 = 7. ◀

Note that MN ≥M −∆max holds. This is because M −∆max refers to the minimum possible number

of busy processors when a certain task τi’s job cannot execute despite being ready due to the unavailability of

a sufficient number of processors. These scheduled tasks along with τi form a subset of all N tasks. Perhaps,

if all N tasks have pending jobs, then the minimum possible number of busy processors (MN) would not

decrease.

Before showing how to compute Mp, we first give a sufficient SRT-schedulability condition for G-EDF

assuming Mp values are given. This condition is comprised of two sub-conditions involving task utilizations

ui and horizontal utilizations σi, which we define next.

Definition 6.5. Let Ub =
∑

b smallest ui, i.e., Ub denote the sum of the b smallest ui values. ◀

∃ b ∈ N0 : b < N ∧ Utot ≤ (M −∆max + Ub) ∧ Utot ≤MN−b (6.8)

∀ i : σi ≤ 1 ∧mi ≤M (6.9)

Specifically, we will prove the following theorem.

Theorem 6.4. If (6.8) and (6.9) hold, then τi’s response time is at most Ti + x+ Ci where

x ≥ max{0,
∑

(N−b−1) largest mkCk − Cmin

M −∆max + Ub+1 − Utot
}. (6.10)

Here,
∑

(N−b−1) largest mkCk is the sum of the N − b− 1 largest values of mkCk among all k.

212

Note that the denominator in (6.10) is positive if (6.8) is met. This is because Ub+1 > Ub, implying

M −∆max+Ub+1 > M −∆max+Ub ≥ Utot. Also, if a task system satisfies the schedulability condition in

Theorem 6.3, then it also satisfies (6.8), i.e., Theorem 6.4. This can be shown by considering b = 0, for which

Utot ≤M −∆max ≤MN holds . The last inequality holds because by Definition 6.3, at least M −∆max

processors are busy if a task has a pending but unscheduled job.

Example 6.5. Consider seven gang tasks to be scheduled on ten processors by G-EDF. Let τ1 = (10, 1, 9)

and τi = (10, 1, 2) for all i > 1. Thus, Utot =
9·1
10 + 6 × 2·1

10 = 21
10 = 2.1. Also, we have ∆1 = 8, as τ1

cannot execute if one of the remaining tasks is scheduled. Thus, ∆max = 8 and M −∆max = 2. Since

Utot > M −∆max = 2, the system is deemed SRT-unschedulable by Theorem 6.3.

Now consider the condition in (6.8). For b = 1, Ub = 2/10 = 0.2, so M −∆max + Ub = 2+ 0.2 = 2.2

holds, which is larger than Utot. Also, at least nine processors are busy at time t if at least N − 1 tasks

have pending jobs at time t. Thus, MN−1 = 9 > Utot, and (6.8) is satisfied. Therefore, the system is

SRT-schedulable by Theorem 6.4. ◀

We now prove Theorem 6.4. Our proof strategy is similar to the LAG-based approach pioneered by Devi

and Anderson [Devi and Anderson, 2005] for ordinary sporadic tasks, and later adapted for gang tasks by

Dong et al. [Dong et al., 2021]. The LAG-based analysis in [Dong et al., 2021] relies on determining an upper

bound on LAG by considering lag values at the latest time instant t0 at or before the deadline td of a job of

interest such that at least M −∆max
2 processors are busy during [t0, td). However, this may not capture the

“opportunistic” execution of lower-priority jobs (e.g., the execution of τ3 during [0, 5) in Figure 6.6 despite

having lower priority than τ2). By defining t0 using the number of tasks with pending jobs, instead of busy

processors, we can account for such lower-priority job execution. This may result in a larger LAG upper

bound at t0, as more tasks need to be considered, causing larger response-time bounds.

We prove Theorem 6.4 by induction on job priorities. Assume that (6.8) and (6.9) hold for Γ and let b be

the smallest non-negative integer for which (6.8) is met. Let S be a G-EDF schedule of Γ. We consider an

arbitrary job τi,j and inductively prove that its response time is no more than Ti + x+ Ci in S. Thus, we

assume the following.

Assumption 6.2. The response time of each job with higher priority than τi,j is at most Ti + x+ Ci in S.

2For sporadic tasks, ∆max = 0. Thus, all processors are busy.

213

We assume that a job may execute for less than its WCET. Each job τk,ℓ’s execution time is denoted by

Ck,ℓ ≤ Ck. Let td = d(τi,j) and tf = f(τi,j). We assume that tf > td holds, otherwise τi,j’s response time

is at most Di = Ti. We now denote the jobs considered in Assumption 6.2 as follows.

Definition 6.6. Let ψ be the set of jobs that have higher priorities than τi,j . Let Ψ = ψ ∪ {τi,j}. ◀

Under G-EDF scheduling, τi,j can only be delayed by the jobs in Ψ \ {τi,j}. Note that jobs not in Ψ

can be scheduled before τi,j due to the lack of enough processors to schedule τi,j (line 5 in Algorithm 6.2).

However, such jobs will be preempted (if needed) as soon as there are enough processors to schedule τi,j .

The following lemma gives an upper bound on lag values.

Lemma 6.10 ([Dong et al., 2021]). For any task τk and a time instant t ≤ td, lag(τk, t,S) ≤ mk(xλk +Ck)

holds.

Definition 6.7. A time instant t is called b-busy if at least N − b tasks have pending jobs (hence, at most

b tasks have no pending jobs) in Ψ at t, and b-non-busy otherwise. A time interval is called b-busy (resp.,

b-non-busy) if each instant in the interval is b-busy (resp., b-non-busy). ◀

The number of busy processors in a b-busy time instant t depends on the mi values and the deadlines

of the pending jobs at time t. Also, the number of busy processors may vary throughout a b-busy interval

because of job releases and completions.3 However, by Definition 6.4, the number of busy processors is

lower bounded by MN−b at any busy instant, as there are at least N − b pending jobs.

Definition 6.8. Let t0 be the earliest time instant such that [t0, td) is a b-busy interval. Let τ∗ be the set of

tasks with jobs in Ψ that are pending at time t0 − 1. Note that τ∗ = ∅, if t0 = 0. ◀

Using Lemma 6.10, we upper bound the LAG of Ψ at t0.

Lemma 6.11. LAG(Ψ, t0,S) ≤
∑

τk∈τ∗ (mk (xλk + Ck)).

Proof. By (6.6), we have

LAG(Ψ, t0,S) =
∑

τk,ℓ∈Ψ
lag(τk,ℓ, t0,S)

=
∑
τk∈Γ

∑
τk,ℓ∈Ψ

lag(τk,ℓ, t0,S)

3Such variance does not occur for sporadic tasks, as each task’s mi = 1.

214

=
∑
τk∈τ∗

∑
τk,ℓ∈Ψ

lag(τk,ℓ, t0,S) +
∑
τk /∈τ∗

∑
τk,ℓ∈Ψ

lag(τk,ℓ, t0,S). (6.11)

We now prove two claims, motivated by (6.11), depending on whether a task is in τ∗ or not.

Claim 6.1. For any τk /∈ τ∗,
∑

τk,ℓ∈Ψ lag(τk,ℓ, t0,S) ≤ 0.

Proof. Since τk /∈ τ∗, τk has no pending jobs in Ψ at time t0 − 1. Let τk,p ∈ Ψ be the latest job of τk

released at or before time t0 − 1 (hence, before time t0). By the definition of I, for each job τk,ℓ ∈ Ψ

with ℓ ≤ p, we have A(τk,ℓ, 0, t0, I) ≤ Ck,ℓ. Additionally, since τk,p completes execution by time t0 in

S, we have A(τk,ℓ, 0, t0,S) = Ck,ℓ for each such job τk,ℓ. Thus, for all ℓ ≤ p, we have A(τk,ℓ, 0, t0, I) −

A(τk,ℓ, 0, t0,S) ≤ 0. Therefore, by (6.2) we have

∀ℓ ≤ p : lag(τk,ℓ, t0,S) ≤ 0. (6.12)

No job τk,ℓ ∈ Ψ with ℓ > p can execute before time t0 in both I and S. Thus, for ℓ > p, we have

A(τk,ℓ, 0, t0, I) = A(τk,ℓ, 0, t0,S) = 0. Thus, we have ∀ℓ > p : lag(τk,ℓ, t0,S) = 0. Together with (6.12),

this implies the claim.

Claim 6.2. For any τk ∈ τ∗ and job τk,ℓ /∈ Ψ, lag(τk,ℓ, t0,S) ≥ 0.

Proof. Since each task executes sequentially, job τk,ℓ /∈ Ψ cannot execute before all jobs of τk in Ψ complete

their execution. Since τk has a pending job in Ψ at time t0−1, τk,ℓ cannot be scheduled at or before time t0−1

in S . Thus, A(τk,ℓ, 0, t0,S) = 0 holds. Since A(τk,ℓ, 0, t0, I) ≥ 0 holds, by (6.2), the claim follows.

By Claim 6.1 and (6.11), we have LAG(Ψ, t0,S) ≤
∑

τk∈τ∗
∑

τk,ℓ∈Ψ lag(τk,ℓ, t0,S), which is at

most
∑

τk∈τ∗
(∑

τk,ℓ∈Ψ lag(τk,ℓ, t0,S) +
∑

τk,ℓ /∈Ψ lag(τk,ℓ, t0,S)
)
=
∑

τk∈τ∗ lag(τk, t0,S), by Claim 6.2.

Therefore, by Lemma 6.10, LAG(Ψ, t0,S) ≤
∑

τk∈τ∗ mk(xλk + Ck).

Finally, we give an upper bound on LAG of Ψ at time td.

Lemma 6.12. LAG(Ψ, td,S) ≤
∑

τk∈τ∗ (mk (xλk + Ck)).

215

Proof. Since [t0, td) is a b-busy interval, by Definitions 6.4 and 6.7, at least MN−b processors are busy

executing jobs in Ψ during [t0, td) in S . Thus, A(Ψ, t0, td,S) ≥MN−b(td − t0) holds. By (6.7), we have

LAG(Ψ, td,S) = LAG(Ψ, t0,S) + A(Ψ, t0, td, I)− A(Ψ, t0, td,S)

≤ {Since A(Ψ, t0, td, I) ≤ Utot(td − t0) and A(Ψ, t0, td,S) ≥MN−b(td − t0)}

LAG(Ψ, t0,S) + Utot(td − t0)−MN−b(td − t0)

≤ {Since Utot ≤MN−b by (6.8)}

LAG(Ψ, t0,S)

≤ {By Lemma 6.11}∑
τk∈τ∗

(mk (xλk + Ck)) .

Let W be the total remaining workload of Ψ at time td in S . Using Lemma 6.12, we upper bound W in

the lemma below.

Lemma 6.13. W ≤
∑

τk∈τ∗ (mk (xλk + Ci)).

Proof. By the definition of I, all jobs in Ψ finish execution by time td in I. The completed workload of the

jobs in Ψ at time td is A(Ψ, 0, td,S). Thus, the remaining workload of Ψ at time td in S is LAG(Ψ, td,S) ≤∑
τk∈τ∗ (mk (xλk + Ck)).

The following lemma gives a lower bound on W if τi,j’s response time exceeds Ti + x+Ci. The lemma

can be proven by considering an interval [td, td + ty) during which at least M −∆max processors execute

jobs in Ψ.

Lemma 6.14 ([Dong et al., 2021]). If W ≤ (M −∆max)x+ Ci holds, then τi,j’s response time is at most

Ti + x+ Ci.

The next lemma shows that Theorem 6.4 holds.

Lemma 6.15. τi,j’s response time is at most Ti + x+ Ci.

216

Proof. Assume that τi,j’s response time is more than Ti + x + Ci. Then, by Lemma 6.14, W > (M −

∆max)x+ Ci holds. By Lemma 6.13, we have

(M −∆max)x+ Ci <
∑
τk∈τ∗

mk (xλk + Ck) ,

which implies

x <

∑
τk∈τ∗ mkCk − Ci

M −∆max −
∑

τk∈τ∗ mkλk

=

∑
τk∈τ∗ mkCk − Ci

M −∆max −
∑

τk∈τ∗ uk

≤ {Since |τ∗| ≤ N − b− 1 and Ci ≥ Cmin}∑
(N−b−1) largest mkCk − Cmin

M −∆max −
∑

(N−b−1) largest uk

=

∑
(N−b−1) largest mkCk − Cmin

M −∆max − U +
∑

(b+1) smallest uk

= {By Definition 6.5}∑
(N−b−1) largest mkCk − Cmin

M −∆max + Ub+1 − U
,

which contradicts (6.10).

Discussion. The response-time bound given in Theorem 6.4 is smaller for large b values. Thus, to compute a

small response-time bound, the largest b value that satisfies (6.8) should be picked.

Computing Mp. We now show how to compute the value of Mp. We begin by giving the following property.

Property 6.1. Let M e
p denote the minimum possible number of busy processors whenever exactly p tasks in

Γ have pending jobs. Then, for any p < N , M e
p ≤M e

p+1.

By Property 6.1, we have Mp =M e
p . Thus, we compute Mp by determining M e

p . To compute M e
p , we

first index tasks in the non-decreasing order by mi, i.e., mi ≤ mi+1.

Property 6.2. If M ′ processors are busy at time t, then, for any unscheduled task τi with pending jobs,

M ′ +mi > M holds.

217

Algorithm 6.3 Finding Mp.
Variables:

F [i, ℓ,m] is initially NULL
B[i, ℓ,m] precomputed true/false values
mi values in non-decreasing order

1: procedure FIND Mp(i, ℓ,m)
2: if F [i, ℓ,m] ̸= NULL then
3: return F [i, ℓ,m]

4: if ℓ < 0 ∨m < 0 then
5: return∞
6: if i = N then
7: F [i, ℓ,m]←∞
8: if ℓ = 0 and mi ≤ m then
9: F [i, ℓ,m]← mi

10: if (ℓ = 0 and mi > m) or ℓ = 1 then
11: F [i, ℓ,m]← 0

12: return F [i, ℓ,m]

13: x1 ← FIND Mp(i+ 1, ℓ− 1,m)
14: x2 ← FIND Mp(i+ 1, ℓ,m−mi) +mi

15: for each x ∈ {m−mi + 1, · · · ,m} do
16: if B[i+ 1, ℓ, x] = true then
17: x3 ← x
18: break
19: F [i, ℓ,m]← min(x1, x2, x3)
20: return F [i, ℓ,m]

We give a dynamic-programming algorithm to compute M e
p that satisfies Property 6.2 as shown in

Algorithm 6.3. Algorithm 6.3 uses a precomputed array B, which we compute via dynamic programming.

We first describe how B is computed.

Let B[i, ℓ,m] be true if there exists a subset Γi,ℓ of (N − i+1)− ℓ tasks with pending jobs (i.e., exactly

ℓ tasks with no pending jobs) in {τi, τi+1, · · · , τN} such that (∃ Γe
i,ℓ ⊆ Γi,ℓ :

∑
τk∈Γe

i,ℓ
mk = m) holds, and

false otherwise. Informally, if B[i, ℓ,m] is true and if there are exactly ℓ tasks in {τi, τi+1, · · · , τN} that

have no pending jobs at time t, then there is a way to select jobs from the remaining (N − i+ 1)− ℓ tasks to

occupy exactly m processors.

We can compute the array B in O(N2M) time via dynamic programming using the following recurrence.

218

B[i, ℓ,m] =



true if i = N ∧ ((m = mN ∧ ℓ = 0) ∨ (m = 0 ∧ ℓ ≤ 1))

false if ℓ < 0 ∨ (i = N ∧ ((m = mn ∧ ℓ ̸= 0) ∨ (m = 0 ∧ ℓ > 1)

∨(m /∈ {0,mn})))

B[i+ 1, ℓ,m−mi]

∨B[i+ 1, ℓ,m] otherwise

∨B[i+ 1, ℓ− 1,m]

(6.13)

The first two cases in (6.13) cover the base cases. For i = N , B[N, ℓ,m] is only true if ℓ = 0 (τN has

a pending job) and m = mN , or ℓ ≤ 1 and m = 0. For i < N , B[i, ℓ,m] is computed via the third case

in (6.13). B[i+ 1, ℓ,m−mi] (resp., B[i+ 1, ℓ,m]) holds when τi has a pending job that executes on mi

processors (resp., does not execute), ℓ tasks in {τi+1, · · · , τN} have no pending jobs, and those tasks with

pending jobs occupy m−mi (resp., m) processors. B[i+ 1, ℓ− 1,m] holds when τi has no pending jobs,

ℓ− 1 tasks in {τi+1, · · · , τN} have no pending jobs, and the tasks with pending jobs occupy m processors.

Using the array B, procedure FIND Mp(i, ℓ,m) in Algorithm 6.3 determines the minimum number of

busy processors when {τi, τi+1, · · · , τN} are scheduled on m processors and ℓ tasks among them have no

pending jobs. To compute Mp, we invoke FIND Mp(1, N − p,M). We now describe the Algorithm 6.3.

Lines 2–3 check whether the subproblem is already computed and lines 4–12 cover the base cases. Line 13

makes a recursive call to determine the minimum number of busy processors when τi has no pending jobs

(thus, ℓ− 1 tasks among {τi+1, . . . , τN} have no pending jobs). Line 14 considers the case where τi has a

pending and scheduled job (thus, ℓ tasks among {τi+1, . . . , τN} have no pending jobs). Lines 15–18 consider

the case where τi has pending but unscheduled jobs. In this case, at least m−mi + 1 processors must be

busy. Thus, for each x ∈ {m−mi + 1, · · · ,m}, we consult the array B to determine the lowest possible x

value for which B[i+ 1, ℓ, x] is true. Note that if B[i+ 1, ℓ, x] is true, then any unscheduled task τk with

k > i satisfies Property 6.2 because mi ≤ mk. Finally, the minimum among the three cases is returned.

Since i ≤ N , ℓ ≤ N , and m ≤M holds, FIND Mp is called at most O(N2M) times. In each call, lines

15–18 take O(M) time with the precomputed array B. Thus, the total time to compute Mp is O(N2M2).

Since Mp can be computed in polynomial time, (6.8) can also be checked in polynomial time.

219

6.5 Experimental Evaluation

In this section, we provide the results of a schedulability study we conducted to evaluate our proposed

approaches.

Our task-system generation method is similar to that used in prior gang-task-related schedulability

studies [Dong and Liu, 2019, 2022; Dong et al., 2021]. We generated task systems randomly for platforms

with M = 16 or M = 32 processors. Motivated by automotive use cases, we chose task periods from

{2, 5, 10, 20, 50, 100, 200, 1000}ms [Kramer et al., 2015]. We considered light, medium, or heavy horizontal

task utilizations, which are uniformly distributed in [0.01, 0.1], [0.1, 0.3], and [0.3, 1], respectively. We set

each task’s WCET Ci to Ti · σi rounded to the next microsecond. We considered small, moderate, or heavy

degrees of parallelism, for which mi values were uniformly distributed in [1, M4], [
M
4 ,

5M
8], and [5M8 , 7M8],

respectively. We varied the normalized utilization, i.e., Utot/M , from 0.1 to 1.0 with a step size of 0.1. For

each combination of M , horizontal task utilization, degree of parallelism, and normalized utilization, we

generated 1,000 task systems. We generated each such task system by creating tasks until the system’s

normalized utilization exceeded the desired value, and then reducing the last task’s utilization so that the

normalized utilization equaled the desired value. We call each combination of M , horizontal task utilization,

and degree of parallelism a scenario.

We assessed the SRT-schedulability of each task system under both G-EDF and the server-based

scheduling policies given in Section 6.2. For scheduling servers, we considered FP scheduling with

parallelism-decreasing priorities (S-FP-M), FP scheduling with utilization-decreasing priorities (S-FP-

U), LLF scheduling (S-LLF), and ILP-based scheduling (S-ILP). To assess the efficacy of the schedulability

tests of servers given in Section 6.2, we also determined the schedulability of servers under G-EDF using

methods in [Dong and Liu, 2019] (EDF-DOLI). For G-EDF scheduling of gang tasks, we determined

schedulability by the prior method (denoted EDF-P) from Dong et al., i.e., Theorem 6.3, and by our method

(denoted EDF-O), i.e., Theorem 6.4. For each scenario, we computed acceptance ratios, which give the

percentage of task systems that were schedulable under each approach. We present a representative selection

of our results in Figures 6.7 and 6.8.

Observation 6.1. In all scenarios, S-LLF had a higher acceptance ratio than S-FP-M, S-FP-U, EDF-O,

and EDF-P. For most scenarios, S-FP-M and S-FP-U had higher acceptance ratios than EDF-P. The

220

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

S-FP-M
S-FP-U
S-LLF
S-ILP
S-EDF-DoLi
EDF-O
EDF-P

(a) Acceptance ratio for medium horizontal utilizations and mod-
erate degree of parallelism.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

S-FP-M
S-FP-U
S-LLF
S-ILP
S-EDF-DoLi
EDF-O
EDF-P

(b) Acceptance ratio for heavy horizontal utilizations and small
degree of parallelism.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

S-FP-M
S-FP-U
S-LLF
S-ILP
S-EDF-DoLi
EDF-O
EDF-P

(c) Acceptance ratio for heavy horizontal utilizations and moderate
degree of parallelism.

Figure 6.7: Schedulability results.

average improvement in S-LLF, S-FP-M, S-FP-U, and EDF-O over EDF-P was 37.65%, 26.37%, 28.79%,

and 8.32%, respectively.

221

This can be seen in Figure 6.7(a)–(c). Being a JLDP scheduling algorithm, LLF can schedule more task

systems than the other approaches. In most scenarios, server-based FP scheduling outperformed G-EDF,

while utilization-decreasing priority ordering outperformed parallelism-decreasing priority ordering. As

expected, more task systems were schedulable by Theorem 6.4 than by Theorem 6.3.

Observation 6.2. For scenarios with a small degree of parallelism, EDF-O and EDF-P had higher

acceptance ratios than S-FP-M and S-FP-U.

This can be seen in Figure 6.7(b). When the mi values are small, ∆max (Definition 6.3) is also small.

This causes more task systems to be schedulable under G-EDF by Theorem 6.3.

Observation 6.3. The average improvement in S-ILP over S-LLF, S-FP-M, S-FP-U, EDF-O, and EDF-P

was 0.16%, 9.10%, 7.05%, 27.29%, and 37.88%, respectively. In all scenarios, EDF-DOLI had smaller

acceptance ratios than S-ILP, S-LLF, S-FP-M, and S-FP-U.

Figure 6.7 shows this. Server-based LLF scheduling scheduled most task systems that were schedulable

under ILP-based scheduling. In contrast, many SRT-feasible task systems were deemed unschedulable by the

other considered approaches. EDF-DOLI was deemed more pessimistic than S-ILP, S-LLF, S-FP-M, and

S-FP-U, as it is applicable to HRT-scheduling of sporadic gang tasks.

To compare the response-time bounds derived under G-EDF (Theorem 6.4) with those from [Dong et al.,

2021], we computed relative response-time bounds for all task systems that are SRT-schedulable according to

the corresponding G-EDF schedulability tests. A task’s relative response time is computed by dividing its

response time by the maximum period, i.e., Tmax. When computing relative response-time bounds using

Theorem 6.4, we selected the largest value of b for which (6.8) was satisfied.

Observation 6.4. On average, relative response-time bounds in EDF-O were 47.53% smaller than EDF-P.

Figure 6.8 shows this. This improvement was due to frequently observed large b values that contributed

to a less pessimistic accounting of carry-on workloads.

6.6 Chapter Summary

In this chapter, we have considered the SRT-feasibility problem for systems of gang tasks. We have

presented a necessary and a sufficient condition for the SRT-feasibility of such systems. Based on these

222

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0

2

4

6

8

10

Re
la

tiv
e

Re
sp

on
se

-
 T

im
e

Bo
un

d

EDF-O
EDF-P

(a) Relative response-time bounds under G-EDF for M = 32, heavy horizon-
tal utilizations, and small degree of parallelism.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Re
sp

on
se

-
 T

im
e

Bo
un

d

EDF-O
EDF-P

(b) Relative response-time bounds under G-EDF for M = 16, medium
horizontal utilizations, and moderate degree of parallelism.

Figure 6.8: Response-time bound results.

conditions, we have shown that the SRT-feasibility problem for gang task systems is NP-hard. We have also

provided server-based scheduling policies for gang tasks and corresponding SRT-schedulability tests for gang

tasks based on exact HRT-schedulability tests for the servers. Finally, we have shown that G-EDF is not

SRT-optimal for gang tasks and provided an SRT-schedulability test for gang tasks under G-EDF. We have

provided experimental evaluations that demonstrate the benefits of our approaches.

223

CHAPTER 7: SCHEDULING GANG TASKS WITH PRECEDENCE CONSTRAINTS1

In this chapter, we consider scheduling processing graphs of gang tasks on heterogeneous platforms

consisting of different types of compute elements (CEs) such as CPUs, GPUs, FPGAs, etc. In such a task

model, gang tasks have precedence constraints among them and each gang task is assigned to a particular CE

on which it executes. This task model generalizes various systems. We describe two such examples below.

Scheduling on multicore+GPU platforms. Processing graphs scheduled on multicore platforms augmented

with GPUs represent a special case of our task model. In such systems, graph nodes that execute on GPUs

are modeled as gang tasks, while nodes that execute on CPUs are sequential tasks (a special case of gang

tasks). It is worth noting that, for such applications, the corresponding processing graphs can be constructed

at different granularities [Yang et al., 2018]. Below, we discuss a few such approaches.

In the first approach, all GPU accesses are hidden inside a CPU node by treating them as suspension

times on the CPU. This essentially converts the schedulability problem into a CPU-only scheduling problem.

The key benefit of this approach is that it allows the use of existing CPU-only schedulability tests for such

systems. Figure 7.1(a) illustrates a DAG that contains a GPU-accessing node. The shaded region indicates

the suspension time on the CPU due to the GPU access.

In the second approach, the graph may explicitly contain GPU nodes, but at a coarser level of granularity.

Such coarse-grained graphs may include GPU kernels—pieces of code that execute on the GPU in parallel

across thousands or even millions of threads—as GPU nodes. In the case of NVIDIA GPUs, these GPU

nodes execute on one or more streaming multiprocessors (SMs), which are mini multicore processors inside

the GPU. For analyzing such coarse-grained graphs, the SMs can be treated as black boxes; e.g., details of

how threads are scheduled within SMs need not be considered in the analysis. Figure 7.1(b) illustrates a

coarse-grained GPU-accessing DAG. The GPU-accessing node is decomposed into a GPU node, representing

the GPU kernel, and CPU nodes responsible for launching the kernel and reading the results from the GPU.

1 Contents of this chapter previously appeared in preliminary form in the following paper:

Ahmed, S., Massey, D., and Anderson, J. (2025), Scheduling Processing Graphs of Gang Tasks on Heterogeneous
Platforms, Proceedings of the 31st IEEE Real-Time and Embedded Technology and Applications Symposium, pages
362–374.

224

GPU-accessing task GPU kernel
Blocks

(a) (b) (c)

Figure 7.1: Illustration of GPU-accessing DAGs when (a) GPU accesses are treated as CPU suspension time,
explicitly at a (b) coarser granularity, and (c) finer granularity.

Finally, fine-grained graphs can be constructed by decomposing GPU kernels into blocks. Blocks are

groups of kernel threads, with their number and size specified in the user code. When fine-grained graphs

are analyzed, the schedulability analysis requires knowledge of block WCETs and how blocks execute

within SMs. Note that block WCET estimates can be obtained via measurements using the globaltimer

performance-counter register [Yang et al., 2018]. Interested readers are referred to [Yang et al., 2018] for more

details. Figure 7.1(c) shows a fine-grained GPU-accessing DAG, in which the GPU kernel is decomposed

into multiple thread blocks that can execute concurrently on the GPU.

Time partitioning in component-based systems. Large systems are often decomposed into components that

interact with one another through pre-defined interfaces. Software certification processes for safety-critical

applications typically require these components to be partitioned in time and space (e.g., ARINC 653 in

avionics [Prisaznuk, 2008]). Hierarchical scheduling techniques can enable time partitioning among different

software components of a component-based system. Under these techniques, the top-level scheduler allocates

a gang-like set of processors to each component for certain time intervals. Since dataflow dependencies may

be present between components due to their interaction through interfaces, designing the top-level scheduler

reduces to the problem of scheduling processing graphs of gang tasks.

Scheduling. In this chapter, we consider work-conserving and semi-work-conserving scheduling of process-

ing graphs of gang tasks. GEL schedulers form a subset of work-conserving schedulers; therefore, our results

also apply to GEL schedulers. We introduce semi-work-conserving schedulers because scheduling on an

NVIDIA GPU is semi-work-conserving when all GPU work is submitted from the same address space [Amert

225

et al., 2017]. We illustrate semi-work-conserving schedulers and their connection to GPU scheduling in

Section 7.2.

Organization. After covering needed background (Section 7.1), we discuss the considered scheduling

algorithms in detail (Section 7.2), provide techniques to account for parallelism-induced idleness for gang

tasks that form DAGs (Section 7.3), give our response-time bound for a DAG (Section 7.4), present techniques

to support multiple DAGs (Section 7.5), present our experiments (Section 7.6), and conclude (Section 7.7).

7.1 System Model

We consider a task system Γ consisting of N DAG tasks {G1, G2, . . . , GN}. For ease of notation, we

use DAG indices only when relevant. Each DAG task G releases a potentially infinite sequence of DAG jobs

G1, G2, The release and completion time of Gj are denoted by r(Gj) and f(Gj), respectively. DAG

jobs of G are released sporadically with period T. We assume that each DAG G has a constrained relative

deadline D ≤ T, i.e., DAG job Gj must finish execution by time r(Gj) +D.

Each DAG G is represented as a tuple (V,E), where V and E are sets of nodes and directed edges,

respectively. The set V consists of n rigid gang tasks {τ1, τ2, . . . , τn}. We assume that tasks are indexed

according to a topological order of G. Each gang task τi has a (WCET) Ci and a degree of parallelism mi

that denotes the number of simultaneously available processors required to execute any job (instance) of τi.

Thus, the worst-case execution requirement (WCER) of each job of τi is mi ×Ci. A directed edge from τi to

τk represents a precedence constraint between the predecessor task τi and the successor task τk. The set of

predecessors (resp., successors) of τi is denoted by pred(τi) (resp., succ(τi)). We assume that each DAG G

has a unique source task τ1 with no incoming edges and a unique sink task τn with no outgoing edges. The

utilization of τi is ui = (Ci ×mi)/T, which can exceed 1.0. The utilization of DAG task G is U =
∑n

i=1 ui.

The total utilization of Γ is Utot =
∑

G∈Γ U .

DAGs in Γ are scheduled on µ compute elements (CEs). A CE might be a CPU or some specialized

hardware accelerator. The kth CE consists ofMk identical processors. Each task τi of a DAG G has a

parameter γi ∈ {1, 2, . . . , µ} that represents the CE on which τi executes.

Example 7.1. Figure 7.2 shows a DAG of ten tasks on two CEs. Tasks τ2, τ3, τ4, and τ9 are assigned to one

CE, while the remaining tasks execute on the other CE. τ7’s degree of parallelism is m7 = 3 and its WCET is

C7 = 4. ◀

226

τ1(1, 4)

τ2(3, 5)

τ3

(2, 4)

τ7

(3, 4)

τ9

(2, 2)

τ4(4, 3)

τ5(2, 3)

τ6 (2, 3)

τ8 (1, 3)

τ10 (1, 2)

Figure 7.2: A DAG G. Solid and hatched circles represent tasks allocated to two different CEs. Tuples circles
represent (mi, Ci).

Each DAG job Gj is composed of the jth job τi,j of each task τi. The release time and finish time of

job τi,j are denoted by r(τi,j) and f(τi,j), respectively. The jth job τ1,j of the source task τ1 is released

when Gj is released, i.e., r(Gj) = r(τ1,j). The jth job of each non-source task is released once the

jth job of each of its predecessors finishes, i.e., r(τi,j) = maxτk∈pred(τi){f(τk,j)}. Job τi,j is ready to

execute during [r(τi,j), f(τi,j)). DAG job Gj completes when τn,j completes. The response time of Gj is

R(Gj) = f(τn,j)− r(τ1,j). G’s response time is R(G) = supj{R(Gj)}.

A path λ = {v1, v2, . . . , vk} is an ordered set of tasks of G (i.e., vi ∈ V for each 1 ≤ i ≤ k) such

that vi ∈ pred(vi+1) holds. (We use the symbol v to simplify indexing nodes of λ.) When job indices are

irrelevant, we also use λ to denote the ordered set of the jth jobs of tasks in {v1, v2, . . . , vk}. A path is a

complete path if it contains the source and sink nodes. We define the length of a path as follows:

len(λ) =
∑
τi∈λ

Ci. (7.1)

If a path exists from τi to τk, then τi (resp., τk) is called an ancestor (resp., descendant) of τk (resp., τi).

The jth job of an ancestor (resp., descendant) task of τi is an ancestor (resp., descendant) job of τi,j . The

set of ancestors (resp., descendants) of τi is denoted as anc(τi) (resp., desc(τi)). The set of ancestors (resp.,

descendants) of τi,j is denoted as anc(τi,j) (resp., desc(τi,j)). {We use dep(τi) (resp., dep(τi,j)) to denote

anc(τi) ∪ desc(τi) (resp., anc(τi,j) ∪ desc(τi,j)). For any subset V ′ ⊆ V of tasks, we define its volume as

follows:

vol(V ′) =
∑
τi∈V ′

miCi. (7.2)

227

Example 7.1 (Continued). In Figure 7.2, task τ6 has two predecessors τ2 and τ3. Tasks {τ1, τ3, τ7, τ9, τ10}

form a complete path with length 16. Task τ6’s ancestors (resp., descendants) are anc(τ6) = {τ1, τ2, τ3}

(resp., desc(τ6) = {τ9, τ10}). Finally, vol(anc(τ6)) = 1 · 4 + 3 · 5 + 2 · 4 = 27. ◀

We summarize all introduced notation in Table 7.1.

7.2 Scheduling

In this section, we describe the scheduling policies under which we give the response-time bounds in

Section 7.4.

7.2.1 Federated Scheduling

To schedule multiple DAGs, we use the federate scheduling techniques discussed in Section 2.2. Under

federated scheduling each DAG G is allocated a dedicated set of processors from each CE. Let Mp denote

the number of processors of the pth CE assigned to G. Thus, all jobs of task τi with γi = p are scheduled on

the Mp processors of the pth CE assigned to G. We require Mp ≥ maxτi:γi=p{mi}, otherwise, a task will

never be scheduled. Mp can be zero if no task of G requires the pth CE.

Heavy vs. light DAGs. For scheduling DAGs of sequential tasks (i.e., tasks with mi = 1) on a single CE,

federated scheduling approaches differentiate between heavy (DAGs with
∑

τi∈V Ci > D) and light (DAGs

with
∑

τi∈V Ci ≤ D) DAG tasks [Li et al., 2014]. Each heavy DAG requires parallel execution of its nodes,

so it is allocated enough processors to meet its deadline. In contrast, all light DAGs share a set of processors,

where they are scheduled as sequential tasks.

When DAG tasks are scheduled on multiple CEs, federated scheduling techniques become more nuanced.

This is because whether a DAG should be treated as heavy or light should be determined on a per-CE basis.

For example, a DAG may have many nodes executing on a CE, while only a few on another. In such a case,

the DAG may be treated heavy on one and light on another [Lin et al., 2023]. Furthermore, if nodes of a

DAG assigned to a CE are scheduled sequentially on the CE, jobs of those nodes may exhibit self-suspending

behavior with respect to the CE, as illustrated in the following example.

Example 7.2. Assume that three nodes, τ1, τ3, and τ6, are assigned to a CE. Figure 7.3 shows a schedule of

these nodes when they execute sequentially. All three nodes have different mi values. The duration between

228

Table 7.1: Notation summary for Chapter 7.

Symbol Meaning

Γ Task system

N Number of DAG tasks

µ Number of CEs

G A DAG

V Nodes of G

E Edges of G

T Period of G

D Rel. deadline of G

τi ith task of G

Ci WCET of τi

γi Assigned CE of τi

mi τi’s degree of parallelism

pred(·) Set of predecessors

succ(·) Set of successors

anc(·) Set of ancestors

desc(·) Set of descendants

λ path of G

V ′
p Tasks of V ′ on the pth CE

len(λ)
∑

τi∈λCi

vol(V ′)
∑

τi∈V ′ miCi

R(·) Response time

Utot Utilization of Γ

Mp Processor count on pth CE

Gj jth DAG job of G

τi,j jth job of τvi
r(τi,j) Release time of job or server job

f(τi,j) Completion time of τvi,j

the execution of τ1 and τ3, when other nodes execute on different CEs, can be regarded as self-suspension

times on τ1’s CE. ◀

229

Time

A set of
processors

Execution on other CEs

τ1
τ3 τ6

Figure 7.3: Scheduling DAG nodes sequentially on a CE.

Thus, if some DAGs are scheduled sequentially on a shared set of processors, deriving their response-time

bounds may require analyzing self-suspending bundled gang tasks. A bundled gang task consists of a chain

of multiple rigid gang subtasks (a special case of our task model), where the mi values of two subtasks

may differ [Wasly and Pellizzoni, 2019]. Thus, the execution in Figure 7.3 can be viewed as bundled tasks

with self-suspension between two consecutive subtasks. We defer providing such an analysis to future work,

restricting our focus on the case where each DAG receives a dedicated number of processors on each CE.

7.2.2 Scheduling DAGs on Allocated Processors

We consider work-conserving and semi-work-conserving approaches for scheduling each DAG on its

allocated processors. Among these two, work-conserving scheduling has been widely studied for sequential

and traditional DAG tasks (DAG tasks with sequential nodes). Work-conserving scheduling for gang tasks

differs from such scheduling of sporadic or DAG tasks, as illustrated below.

Work-conserving scheduling. For gang tasks, work-conserving schedulers do not allow a set of processors

on a CE to remain idle if a ready gang job can use them. Specifically, under work-conserving schedulers, a

job τi,j is ready but unscheduled at any time if and only if the number of idle processors of the γthi CE is

insufficient to schedule τi,j . Thus, any work-conserving scheduler satisfies the following:

WC. Under a work-conserving scheduler, among the processors of the pth CE that are allocated to G, there

are M ′
p idle processors at time t if and only if, for each ready but unscheduled job τi,j with γi = p at

time t, mi > M ′
p holds.

Algorithm 7.1 shows pseudocode for an example preemptive work-conserving scheduler. Note that

non-preemptive schedulers can also be work-conserving. At any scheduling-decision point, Algorithm 7.1

iterates through all ready jobs to schedule as many jobs as possible in an order. If a job cannot fit on the

230

Algorithm 7.1 Work-conserving scheduling.
Variables:

Ready(t) : Set of ready jobs at time t
Sched(t) : Set of jobs to be scheduled at time t

1: procedure AN EXAMPLE WORK-CONSERVING SCHEDULING

2: M ′ ←M
3: Order jobs in Ready(t) according to the scheduling policy
4: for each τi,j ∈ Ready(t) do
5: if mi > M ′ then
6: continue /* Use break for semi-work-conserving */
7: Sched(t)← Sched(t) ∪ {τi,j}
8: M ′ ←M ′ −mi

1st CE

2nd CE

Time0 5 10 15 200 5 10 15 20

τ1

τ2

τ7 τ5

τ6

τ3

τ4
τ9

τ8 τ10

Figure 7.4: A work-conserving schedule of G in Figure 7.2.

available processors, the scheduler attempts to schedule the next job in the order (line 6). Note that the

G-EDF scheduling policy considered in Chapter 6 is similar to Algorithm 7.1.

Example 7.3. Figure 7.4 shows a work-conserving schedule of a DAG job of G in Figure 2.4 on two CEs

consisting of four and six processors, respectively. At time 4, τ1’s job completes, causing the release of

the jobs of τ2, τ3, and τ4. At time 4, jobs of τ2 and τ3 are scheduled on the 2nd CE, but τ4’s job cannot be

scheduled on the remaining one available processor. τ3’s job executes less than τ3’s WCET and completes at

time 7. This causes τ7 to release its job at time 7 on the 1st CE. At time 7, τ4’s job still cannot be scheduled

on the three available processors of the 2nd CE. ◀

Semi-work-conserving scheduling. We now introduce the semi-work-conserving scheduling. A semi-

work-conserving scheduler may allow some processors to remain idle even if an unscheduled ready job

231

1st CE

2nd CE

Time0 5 10 15 200 5 10 15 20 25

τ1

τ2

τ7τ5 τ6

τ3

τ4
τ9

τ8

τ10

Figure 7.5: A semi-work-conserving schedule of G in Figure 2.4.

could fit there. However, in such a case, there must be another ready but unscheduled job that cannot fit on

those processors. Specifically, under a semi-work-conserving scheduler, at any time, a job τi,j is ready but

unscheduled if and only if the number of idle processors is insufficient to schedule a ready but unscheduled

job τk,ℓ. Thus, the following holds.

SC. Under a semi-work-conserving scheduler, among the processors of the pth CE that are allocated to G,

there are M ′
p idle processors at time t if and only among the ready but unscheduled jobs there exists

one τk,ℓ with γk = p at time t for which mk > M ′
p.

Thus, under semi-work-conserving schedulers, when a job τi,j with γi = p is ready but unscheduled,

the number of idle processors M ′
p allocated to G on the pth CE can be larger than mi. However, there must

be another job τk,ℓ with γk = p such that mk is larger than M ′
p. Algorithm 6.2 can be converted into a

semi-work-conserving scheduling algorithm by replacing the statement continue at line 6 by break.

Example 7.4. Figure 7.5 depicts a semi-work-conserving schedule of a DAG job of G in Figure 2.4 on two

CEs consisting of four and six processors, respectively. At time 4, τ1’s job completes, causing the release of

the jobs of τ2, τ3, and τ4. At time 4, τ2’s job is scheduled on the 2nd CE. Assume that the scheduler attempts

to schedule τ4’s job on the three available processors first. Since it cannot fit there, jobs for τ3 and τ4 are not

scheduled. After τ2’s job is completed, τ4’s job is scheduled, and the only remaining ready job on the 2nd CE

is also scheduled. ◀

232

Semi-work-conserving scheduling in GPUs. When GPU-accessing tasks share the same address space,

NVIDIA GPUs schedule tasks in a semi-work-conserving manner. Recall that processors in NVIDIA GPUs

are clustered into SMs. A CUDA-using2 program launches a kernel to be executed on GPU. Each kernel

consists of blocks of multiple threads that are co-scheduled on an SM. Note that all threads of a block must

be scheduled on an SM, i.e., its threads cannot be distributed to multiple SMs.

When a kernel is launched, it moves through a pipeline to enter into a FIFO (EE) queue.3 The blocks

of the kernel at the head of the queue are scheduled on SMs. When all blocks at the head of the queue are

scheduled, the kernel is removed from the queue, and the new head’s blocks are scheduled until no more

blocks can fit any SMs. Thus, if a block of the kernel at the head of the queue cannot fit on any SMs, no

blocks of the non-head kernels are scheduled even if they can fit on remaining processors on an SM, satisfying

SC. Readers interested in the details of scheduling on NVIDIA GPUs are referred to [Amert et al., 2017;

Bakita and Anderson, 2024].

7.3 Parallelism-Induced Idleness

Recall from Chapter 6 that rigid gang tasks can cause parallelism-induced idleness. Quantifying such

idleness was an important step in Chapter 6 to derive G-EDF response-time bounds for sporadic gang

tasks. In this section, we quantify such idleness by determining ∆i (Definition 6.3) values for gang tasks

forming a DAG under both work-conserving and semi-work-conserving scheduling. For work-conserving

and semi-work-conserving scheduling, we define them as follows.

Definition 7.1. For each task τi of G, let ∆W
i (resp., ∆S

i) denote the maximum possible number of idle

processors, among theMγi processors allocated toG on the γthi CE, when a job of τi is ready but unscheduled

under any work-conserving (resp., semi-work-conserving) scheduler. ◀

Since ∆W
i and ∆S

i values depend only on G’s tasks that execute on the γthi CE, we introduce the

following notation.

Definition 7.2. For any set V ′ ⊆ V of tasks, V ′
p denotes the tasks in V ′ that execute on the pth CE, i.e.,

V ′
p = {τi ∈ V ′ : γi = p}. Thus, Vp denotes all tasks of G that execute on the pth CE. ◀

2Although other GPU-programming APIs exist, CUDA is commonly used in real-time systems.
3CUDA also provides CUDA streams that adds an additional queueing prior to EE queues. Using per-job streams, such
queueing can be obviated [Yang et al., 2018].

233

7.3.1 Work-Conserving Schedulers

Recall from Chapter 6 that for independent sporadic tasks, a dynamic programming algorithm to

determine ∆W
i is known for G-EDF scheduling [Dong and Liu, 2019], which is also applicable to any

work-conserving scheduler. This algorithm calculates the smallest number of occupied processors on the γthi

CE by jobs of a subset of other tasks, but leaving fewer than mi available processors (thus, maximizing the

number of idle processors). However, considering subsets of all tasks other than τi can be pessimistic for

DAG tasks, as not all tasks can have ready jobs simultaneously with τi.

To accurately determine ∆W
i values, we give an algorithm that considers only those sets of tasks that can

have ready jobs simultaneously with τi. A set of tasks can simultaneously have ready jobs if no pairs of tasks

in that set have ancestor-descendant relationships. To formally define such tasks, we introduce the notation

par(V ′) for any set V ′ ⊆ V , which is true if jobs of all tasks in V ′ can be ready simultaneously, and false

otherwise:

par(V ′) =
∧

τi∈V ′

τi /∈ ⋃
τk∈V ′\{τi}

dep(τk)

 .

Using par(V ′), ∆W
i can be determined by the following recurrence relation.

∆W
i =



0 if ∀ V ′ ⊆ Vγi : par(V ′ ∪ {τi})

::
∑

τk∈V ′ mk ≤Mγi −mi

max{m′ ∈ {0, · · · ,mi − 1} : (∃ V ′ ⊆ Vγi \ {τi} : otherwise

par(V ′ ∪ {τi}) ∧
∑

τj∈V ′ mj =Mγi −m′)}

(7.3)

The first case in (7.3) sets ∆W
i to zero, as no set V ′ of tasks satisfying par(V ′) can occupy at least Mγi −mi

processors. Thus, τi is never ready but unscheduled due to the unavailability of required number of processors.

The second case sets ∆W
i value by determining a subset of tasks V ′ satisfying par(V ′ ∪ {τi}), which occupy

the smallest number of processors on τi’s CE and leave fewer than mi processors for a job of τi.

Example 7.5. Consider the DAG G in Figure 7.6 that is scheduled on a CE of ten processors. Only jobs

of τ2, τ3, τ5, and τ6 can be ready when τ4 has a ready job, as they are neither ancestors nor descendants

234

τ1

5

τ24

τ3

3

τ5

4

τ7

3
τ4 6

τ6 3

Figure 7.6: A DAG. Numbers outside circles denote mi values.

of τ4. However, since τ3 is a predecessor of τ6, jobs of τ3 and τ6 cannot be simultaneously ready. Thus,

par({τ3, τ4, τ6}) is false. In contrast, par({τ2, τ4, τ5}) is true, as they can have ready jobs at the same time.

Among all sets V ′ ⊂ V \ {τ4} such that par(V ′ ∪ {τ4}) = true, tasks {τ2, τ3} require the least number of

processors, leaving less thanm4 = 6 processors for τ4. Thus, by (7.3), ∆W
4 = 10−m2−m3 = 10−7 = 3.◀

Computing ∆W
i by (7.3). We now give a dynamic programming algorithm to compute ∆W

i values according

to the second case of (7.3). Note that the first case is applicable when there is no m′ value satisfying the

second case. Thus, we only focus on the second case of (7.3). To compute ∆W
i , we consider the set of

tasks Vγi \ (dep(τi) ∪ {τi}). We fill a two-dimensional dynamic-programming table with entries ∆W
i (τj ,m)

where τj ∈ Vγi \ (dep(τi) ∪ {τi}) and m ∈ {0, 1, . . . ,Mγi}. The entry ∆W
i (τj ,m) stores a boolean value,

which is true if τj and a subset of tasks in Vγi \ (dep(τi) ∪ {τi}) with task indices at most j − 1 can execute

in parallel and occupy exactly m processors in τi’s CE, and false otherwise.

Example 7.5 (Continued). Consider the DAG in Figure 7.6. For any m, ∆4(τ3,m) depends on tasks in

V \ (dep(τ4) ∪ {τ4}) with task indices at most 3. Such tasks are {τ2, τ3}. ∆4(τ3,m) is true for m values

that can be occupied by only τ3 or both τ2 and τ3. Thus, ∆4(τ3, 5) and ∆4(τ3, 9) are true, as five (resp., nine)

processors can be occupied by τ3 (resp., τ2 and τ3). ◀

The recurrence relation in (7.4) determines the ∆W
i (τj ,m) values. The first case in (7.4) represents a

base case; ∆W
i (τj ,mj) is true as τj can occupy mj processors. The second case considers all tasks τj ∈ Vγi

that cannot execute in parallel with any task τk ∈ Vγi with k < j and sets the entries corresponding to

m ̸= mj as false. The final case considers all tasks with task indices smaller than j that are not τj’s ancestors

to determine the existence of a set of tasks occupying exactly m − mj processors. Note that case three

235

precludes checking whether τk is a descendant of τj , as task indexing follows a topological ordering.

∆W
i (τj ,m) =



true if m = mj

false if m ̸= mj ∧ (∀k < j :

τk /∈ Vγi \ (dep(τi) ∪ {τi})

∨k<j∧τk∈Vγi\(dep(τi)
∪{τi} ∪ anc(τj))

∆W
i (τk,m−mj) otherwise

(7.4)

Finally, to compute ∆W
i , we determine the smallest m value, say m′, larger than Mγi −mi for which a τj

exists with ∆W
i (τj ,m) = true. We then set ∆W

i =Mγi −m′.

Algorithm 7.2 presents pseudocode for computing the entries of the table ∆W
i according to (7.4). Line 1

creates the table ∆W
i and initializes every entry to false. Consequently, the second case of(7.4) does not need

to be explicitly computed. The outer loop in lines 3–14 iterates over each task τj and computes the entries

of the row ∆W
i (τj , ·). Lines 4–5 handle the case where τj ∈ dep(τi) ∪ {τi}, for which all entries ∆W

i (τj , ·)

remain false by the second case of (7.4). The inner loop in lines 6–14 fills in the entries ∆W
i (τj ,m). Lines 7–

8 cover the first case of (7.4), while lines 9–14 apply the third case to determine the value of ∆W
i (τj ,m).

Finally, lines 15–18 identify and return the smallest value of m (if any) greater than Mγi −mi + 1 for which

there exists a task τj such that ∆W
i (τj ,m) = true . If no such m exists, then the value returned is 0.

Running time. We can compute dep(τi) for all τi in O(|V |2) time [Purdom, 1970]. Computing each entry

of the dynamic programming table corresponding to the first case requires O(1) time. Using pre-computed

dep(τi), computing an entry corresponding to the second and third cases takes O(|V |) time. Thus, the total

running time to compute the dynamic programming table takes O(|V |2Mγi) time. Computing the ∆W
i

value from the table requires an additional O(|V |Mγi) time for scanning all entries in the table. Thus, the

time complexity for computing ∆W
i is O(|V |2Mγi). Finally, computing ∆W

i values for all tasks requires

O(|V |3max{Mγi}) time.

7.3.2 Semi-Work-Conserving Schedulers

When a job of τi is ready but unscheduled under semi-work-conserving schedulers, the number of idle

processors on τi’s CE can exceed mi − 1. This is because, by (SC), if a task τk with mk > mi cannot be

scheduled due to the unavailability of mk processors, it may cause τi to be unscheduled too. Thus, in such a

236

Algorithm 7.2 Compute ∆W
i .

1: procedure COMPUTE ∆W
i

2: ∆w
i = n×Mγi table, each cell initialized to false

3: for j = 1 to n do
4: if τj ∈ dep(τi) ∪ {τi} then
5: continue
6: for m = 1 to Mγi do
7: if m = mj then
8: ∆W

i (τj ,m)← true

9: for k = 1 to j − 1 do
10: if τk ∈ dep(τi) ∪ {τi} ∪ anc(τj) then
11: continue
12: if m > mj and ∆W

i (τk,m−mj) = true then
13: ∆W

i (τi,m)← true
14: break
15: for m =Mγi −mi + 1 to Mγi do
16: for j = 1 to n do
17: if ∆W

i (τj ,m) = true then
18: return Mγi −m
19: return 0

case, the number of idle processors is at most ∆W
k , i.e., the maximum possible number of idle processors

when a job of τk cannot be scheduled under work-conserving schedulers. Therefore, ∆S
i depends on ∆W

k

values of all tasks τk that can have ready jobs simultaneously with τi. Thus, we define ∆S
i as follows:

∆S
i = max

τk∈Vγi\dep(τi)
{∆W

k }. (7.5)

Proof of (7.5). Assume that the number of idle processors is M ′ at time t when a job of τi is ready but

unscheduled. By (SC), there exists a task τk in Vγi \ dep(τi) with a ready but unscheduled job such that

mk > M ′ holds. Since τk has a ready but unscheduled job, only jobs of tasks in Vγi \ dep(τk) can occupy

processors on the γthi CE. By (7.3), the maximum number of idle processors when tasks in Vγi \ dep(τk)

occupy more than Mγi −mk processors of the γthi CE is at most ∆W
k . Thus, since τk ∈ Vγi \ dep(τi), we

have M ′ ≤ ∆W
k ≤ maxτℓ∈Vγi\dep(τi){∆

W
ℓ }, which satisfies (7.5).

From computed ∆W
k values, it requires an additional O(|Vγi |) time to compute a ∆S

i value, thus total

O(|Vγi |2) time to compute such values for all nodes. Including computation times for ∆W
k values, running

time to compute all ∆S
i is O(|V |3maxk{Mk}+ |V |2) = O(|V |3maxk{Mk}).

237

Example 7.6. Consider a semi-work-conserving schedule of the DAG G in Figure 7.6 on ten processors.

Consider ∆S
5 for τ5. Only jobs of τ2, τ4, and τ6 can be ready when τ5 has a ready job. Thus, by (7.5),

∆S
5 = max{∆W

2 ,∆
W
4 ,∆

W
6 }. ◀

∆W
i and ∆S

i values for GPUs. Recall that NVIDIA GPUs cluster their processors into SMs and a job of

gang tasks must execute on a single SM. The above-mentioned approaches to compute ∆W
i and ∆S

i values

can be applied for such a case by first determining such values assuming a single SM and then multiplying

the values by the number of SMs allocated to the DAG. Thus, if c SMs, each containing Mp/c processors, are

allocated to DAG G and ∆W
i,c is the value computed by (7.3) assuming Mp/c processors, then ∆W

i = c ·∆W
i,c.

7.4 Response-Time Bound

In this section, we give a response-time bound for a DAG G of gang tasks that are scheduled on µ

CEs under a work-conserving or a semi-work-conserving scheduler. Since G has constrained deadlines,

we consider a single DAG job to derive our response-time bound. For notational convenience, we omit job

indices, e.g., τi denotes both a task and its job. Our analysis technique is the same for work-conserving and

semi-work-conserving schedulers. Specifically, replacing ∆W
i by ∆S

i from our response-time bound under

work-conserving schedulers yields our response-time bound under semi-work-conserving schedulers. Thus,

we give a response-time bound under an arbitrary schedule, as assumed in the following definition.

Definition 7.3. Let S be a schedule of DAG job G on µ CEs where, for all p, Mp processors of the pth

CE are assigned to G. For each task τi, let ∆i = ∆W
i (resp., ∆i = ∆S

i), if S is work-conserving (resp.,

semi-work-conserving). ◀

Note that, in S , jobs of G may execute for less than their WCETs; our bound is also valid in such a case.

Our analysis relies on an envelope path of G in S, as defined below.

Definition 7.4. In S, a path of jobs {v1, v2, · · · , vk} of G is an envelope path if and only if the following

conditions hold.

(i) v1 = τ1 ∧ vk = τn,

(ii) ∀ i ∈ {1, 2, . . . , k − 1} : f(vi) = r(vi+1),

(iii) ∀ i ∈ {1, 2, . . . , k − 1} : vi ∈ pred(vi+1).

We denote an envelope path of G in S by λe. ◀

238

Example 7.7. We can determine an envelope path by traversing the schedule backward (from sink to source).

In Figure 7.4, τ10 is released when τ8 finishes. Similarly, τ8 is released when τ4 finishes. Iteratively doing

this until τ1 is reached, an envelope path in Figure 7.4 is {τ1, τ4, τ8, τ10}. ◀

Note that there can be multiple envelope paths of G in S. This can happen when multiple predecessor

jobs of τi complete at the same time. For any task on the envelope path λe of G in S , we have the following

lemma.

Lemma 7.1. Let τi be a job of λe. At any time t ∈ [r(τi), f(τi)), if τi is not scheduled, then at leastMγi−∆i

processors of the γthi CE are busy in S.

Proof. Follows from Definitions 6.3 and 7.3.

Let Ae be the union of all intervals when jobs of λe execute in S. Also, let Ane be the union of all

intervals when no jobs of λe execute in S. Thus, Ae ∩Ane = ∅ holds, and we have

|Ae|+ |Ane| = f(τn)− r(τ1) = R(G). (7.6)

Thus, response time R(G) of job G can be upper bounded by upper bounding |Ae| and |Ane|. To upper

bound |Ane|, we define interfering workload for each task on a path.

Definition 7.5. For any τi, we let I(τi) = Vγi \ (dep(τi) ∪ {τi}). For any set V ′ ⊆ V , we define

I(V ′) =
⋃

τi∈V ′ I(τi). ◀

Example 7.7 (Continued). In Figure 7.4, for envelope path λe = {τ1, τ4, τ8, τ10}, Ae = [0, 4) ∪ [9, 12) ∪

[14, 17) ∪ [17, 19), when jobs of λe executes. In contrast, Ane = [4, 9) ∪ [12, 14). By Definition 7.5,

I(τ4) = {τ2, τ3}. ◀

When a job τi is ready but unscheduled, the jobs that execute of τi’s CE are neither an ancestor nor a

descendant of τi. Thus, we have the following lemma.

Lemma 7.2. Let τi be a job of λe. For any time t ∈ [r(τi), f(τi)), if τi is not scheduled at time t, then jobs

that are scheduled on the γthi CE at time t are in I(τi).

Proof. No jobs in dep(τi) are ready during [r(τi), f(τi)). Also, only jobs τk with γk = γi can be scheduled

on τi’s CE. Thus, the lemma holds.

239

Next, we give an upper bound on |Ane|. We begin by introducing some necessary notation.

Definition 7.6. Let τk(V ′) be the task with the kth-highest ∆i value among the tasks of V ′, and ∆k(V
′) is

its ∆i value. We assume that ties are broken by task indices. ◀

By Definition 7.6, for an ℓ-node path λ of G, {τ1(λ), τ2(λ), . . . , τℓ(λ)} is an ordered set of tasks of λ in

descending order of ∆i values. Moreover, since λp denotes the set of tasks on λ that execute on the pth CE

(by Definition 7.2), τk(λp) is the task with the kth-largest ∆i value among all tasks on λ that execute on the

pth CE.

Definition 7.7. For any set V ′ ⊆ V of tasks, let Icup
i (V ′) =

⋃i
j=1 I(τj(V

′)) and Idiff
i (V ′) = I(τi(V

′)) \

Icup
i−1(V

′). ◀

Thus, by Definitions 7.7 and 7.5, Icupi (V ′) consists of all tasks that may interfere with any task in

{τ1(V ′), τ2(V
′) . . . , τi(V

′)}. In contrast, Idiff
i (V ′) consists of tasks that may interfere with task τi(V ′) but

not with any task in {τ1(V ′), τ2(V
′) . . . , τi−1(V

′)}. Thus,
⋃i

j=1 I
diff
j (V ′) also consists of all tasks that may

interfere with any task in {τ1(V ′), . . . , τi(V
′)}. Therefore, we have

Icupi (V ′) =
i⋃

j=1

Idiff
j (V ′). (7.7)

Moreover, for any i ̸= j, Idiff
i (V ′) and Idiff

j (V ′) are disjoint:

∀i ̸= j : Idiff
i (V ′) ∩ Idiff

j (V ′) = ∅. (7.8)

Example 7.8. Assume that the DAG in Figure 7.6 is scheduled by a work-conserving scheduler on a CE

of ten processors. Let V ′ = {τ5, τ6}. According to (7.3), ∆5 = 1 and ∆6 = 0. Thus, by Definition 7.6,

τ1(V
′) = τ5 and τ2(V ′) = τ6. By Definition 7.5, I(τ5) = {τ2, τ4, τ6} and I(τ6) = {τ4, τ5}. Thus, by

Def 7.7, Icup2 (V ′) = I(τ5) ∪ I(τ6) = {τ2, τ4, τ5, τ6}. By Def 7.7, Idiff
1 (V ′) = I(τ5) = {τ2, τ4, τ6} and

Idiff
2 (V ′) = I(τ6) \ I(τ5) = {τ5}. ◀

Definition 7.8. For any subset of tasks V ′
p assigned to the pth CE (Definition 7.2) and 1 ≤ j ≤ |V ′

p |, we

define F (V ′
p , j) as follows:

F (V ′
p , j) =

j∑
i=1

vol(Idiff
i (V ′

p)))

Mp −∆i(V ′
p)
. (7.9)

240

Time

Mp

processors
Idiff
1 (λep)

∆1(λ
e
p) idle

procs.

τ1(λ
e
p) Idiff

2 (λep)

∆2(λ
e
p) idle

procs.

τ2(λ
e
p)

Figure 7.7: Proof of Lemma 7.3.

◀

Intuitively, F (V ′
p , j) is computed by considering j nodes in V ′

p that have the largest ∆i values. For each

such node τi, the interfering workload (the numerator) is computed by considering nodes that interfere with

τi but not with any node with larger ∆i values. Dividing the interfering workload by the number of minimum

possible busy processors when τi is ready but not executing yields a time duration when τi cannot execute

due to such interfering workload. The F (V ′
p , j) values contains the sum these durations for each node.

Using Definition 7.8, in the following lemma, we upper bound |Ane| by considering all tasks in λep in

decreasing order of their ∆i values, i.e., in the order: τ1(λep), . . . , τ|λe
p|(λ

e
p). Under such an ordering, we

assume that a task that can interfere with multiple tasks on λep executes when the task with the largest ∆i

value is ready but unscheduled. Figure 7.7 illustrates the idea: a task that can interfere with both τ1(λep) and

τ2(λ
e
p) is scheduled when tasks of Idiff

1 (λep) are executing, i.e., Idiff
1 (λep) contains that task.

Lemma 7.3. |Ane| ≤
∑µ

p=1 F (λ
e
p, |λep|) holds.

Proof. For any job τi(λep) ∈ λep with 1 ≤ p ≤ µ, let Ane
i,p be the union of intervals when τi(λep) is ready but

unscheduled. Note that τi(λep) follows Definition 7.6. Thus, Ane
i,p ⊆ Ane. By the definition of Ane, we have⋃µ

p=1

⋃|λe
p|

i=1 A
ne
i,p = Ane. Moreover, by Definition 7.4, no two jobs of λe are ready at the same time. Thus, for

any pair of jobs τi(λep) and τj(λeq) on λe with τi(λep) ̸= τj(λ
e
q), A

ne
i,p ∩Ane

j,q = ∅ holds. Therefore, we have

|Ane| =
µ∑

p=1

|λe
p|∑

i=1

|Ane
i,p|. (7.10)

We now upper bound Ane by upper bounding
∑|λe

p|
i=1 |Ane

i,p| in (7.10) for all 1 ≤ p ≤ µ. For any job τk

on the pth CE, let τk execute for Ck,i,p time units during Ane
i,p. By Lemma 7.2, jobs not in I(τi(λep)) cannot

241

execute on the pth CE during Ane
i,p. Thus, we have

∀τk /∈ I(τi(λep)) : γk = p :: Ck,i,p = 0. (7.11)

Thus, the total execution on the pth CE during Ane
i,p is

∑
τk∈I(τi(λe

p))
mkCk,i,p. By Lemma 7.1 and Defini-

tion 7.6, at least Mp −∆i(λ
e
p) processors of the pth CE are busy during Ane

i,p. Hence, we can upper bound

the length |Ane
i,p| as follows:

|Ane
i,p| ≤

∑
τk∈I(τi(λe

p))
mkCk,i,p

Mp −∆i(λep)
.

Therefore, we have
|λe

p|∑
i=1

|Ane
i,p| ≤

|λe
p|∑

i=1

∑
τk∈I(τi(λe

p))
mkCk,i,p

Mp −∆i(λep)
. (7.12)

By Definition 7.5, I(λep) denotes the set
⋃

τk∈λe
p
I(τk). Using I(λep), we can rearrange (7.12) as follows:

|λe
p|∑

i=1

|Ane
i,p| ≤

∑
τk∈I(λe

p)

|λe
p|∑

i=1

mkCk,i,p

Mp −∆i(λep)
. (7.13)

Now, consider a job τk ∈ I(λep). Let sm(k) be the smallest i value such that τk ∈ I(τi(λep)), i.e., ∀j <

sm(k), τk /∈ I(τj(λep)). By (7.11), for any j < sm(k), τk does not execute during Ane
j,p, i.e., Ck,j,p = 0.

Therefore, by (7.13), we have

|λe|∑
i=1

|Ane
i,p| ≤

∑
τk∈I(λe

p)

|λe
p|∑

i=sm(k)

mkCk,i,p

Mp −∆i(λep)

≤ {By Definition 7.6, ∆i(λ
e
p) ≥ ∆i+1(λ

e
p)}

∑
τk∈I(λe

p)

|λe
p|∑

i=sm(k)

mkCk,i,p

Mp −∆sm(k)(λep)

≤ {Since
|λe

p|∑
i=sm(k)

Ck,i,p ≤ Ck}

∑
τk∈I(λe

p)

mkCk

Mp −∆sm(k)(λep)
. (7.14)

242

Now, by the definition of sm(k), sm(k) = i holds when τk is in I(τi(λep)) but not in any I(τj(λep)) with

j < i. Thus, sm(k) = i holds if and only if τk ∈ I(τi(λep)) \
⋃i−1

j=1 I(τj(λ
e
p)) = Idiff

i (λep) (by Definition 7.7).

Thus, by (7.14) and (7.9),

|λe
p|∑

i=1

|Ane
i | ≤

|λe
p|∑

i=1

vol(Idiff
i (λep))

Mp −∆i(λep)
= F (λep, |λep|).

The lemma holds by applying the above inequality in (7.10).

Applying Lemma 7.3 in (7.6), we have the following lemma.

Lemma 7.4. In S , the response time of G is bounded as follows: R(G) ≤ len(λe) +
∑µ

p=1 F (λ
e
p, |λep|).

Proof. By the definition of Ae, |Ae| ≤ len(λe) holds. Applying |Ae| ≤ len(λe) and Lemma 7.3 in (7.6), the

lemma holds.

Now, G’s response time can be upper bounded by considering all complete paths as an envelope path in

Lemma 7.4.

Theorem 7.1. Let Λ(G) be the set of all complete paths of G. G’s response time is bounded as follows.

R(G) ≤ max
λ∈Λ(G)

len(λ) + µ∑
p=1

F (λp, |λp|)

 (7.15)

Proof. Follows from Lemma 7.4.

Unfortunately, even for the special case of sequential nodes (i.e., ∆i = 0), computing the exact value of

the right-hand-side of (7.15) is NP-hard in the strong sense [Han et al., 2019, Theorem 4.2]. Moreover, the

variation in the number of idle processors (∆i values) during different sub-intervals of Ane (see Figure 7.7)

complicates the application of existing approaches to upper bound (7.15), as in [Han et al., 2019], for the

sequential case (where the denominator in (7.9) is always Mp). Thus, such approaches can focus only on

maximizing the numerator of (7.9).

Upper bounding (7.15). To upper bound (7.15), instead of the tasks of λp, we consider the tasks of Vp in

order of decreasing ∆i values. Thus, we consider tasks of Vp in the order: τ1(Vp), τ2(Vp), . . . , τ|Vp|(Vp).

Since λp ⊆ Vp, considering the tasks of Vp in such an order assumes that more processors are idle during

Ane. This enables upper bounding R(G) without determining the path λ that maximizes (7.15).

243

We now show how to upper bound F (λp, |λp|) in (7.15) using the tasks of Vp in order of decreasing ∆i

values. Since λp ⊆ Vp, the volume of tasks that may interfere with tasks in λp (numerator in (7.9)) can be

expressed as the volume of tasks that may interfere with a subset of tasks τ1(Vp), . . . , τk(Vp). In Lemma 7.5,

we determine such an equivalent interfering workload from a subset of tasks in Vp and divide them by the

corresponding ∆i values to upper bound F (λp, j) for any j. We first give the following notation.

Definition 7.9. For any set of tasks V ′, we denote by vik(V ′) the volume of all tasks that may interfere

with any tasks in {τ1(V ′), . . . , τk(V
′)}. Thus, by Definition 7.7, vik(V ′) = vol(Icup

k (V ′)). We define

vi0(V
′) = 0. Furthermore, by (7.7) and (7.8), vik(V ′) satisfies the following:

vik(V
′) = vol

(
k⋃

i=1

Idiff
i (V ′)

)
=

k∑
i=1

vol
(
Idiff
i (V ′)

)
. (7.16)

◀

Note that, by Definitions 7.5 and 7.9, the volume of all tasks that may interfere with any task of V ′ is

vol(I(V ′)) = vi|V ′|(V
′). (7.17)

Lemma 7.5. For any path λ, CE type p, and j ≤ |λp|, let 1 ≤ z(j) ≤ |Vp| be the smallest integer so that

vij(λp) ≤ viz(j)(Vp). Let x(j) = vij(λp)− viz(j)−1(Vp). Then,

F (λp, j) ≤ F (Vp, z(j)− 1) +
x(j)

Mp −∆h(Vp,z(j))
. (7.18)

Proof. Note that vij(λp) = viz(j)−1(Vp)+x(j). Thus, the volume of tasks that interfere with {τ1(λp), τ2(Vp),

. . . , τj(λp)} is the same as the sum of x(j) and the volume of tasks that interfere with {τ1(Vp), τ2(Vp), . . . ,

τz(j)−1(Vp)}.

We first consider the case where vij(λp) = 0. Then, by (7.16), vol(Idiff
i (λp)) = 0 for all i ≤ j. Thus,

by (7.9), F (λp, j) = 0, and the lemma trivially holds.

We now consider vij(λp) > 0. Since z(j) is the smallest integer with vij(λp) ≤ viz(j)(Vp), we have

viz(j)−1(Vp) < vij(λp). (7.19)

We start by showing the following:

244

Claim 7.1. ∆z(j)(Vp) ≥ ∆j(λp).

Proof. Assume that ∆z(j)(Vp) < ∆j(λp). Thus, since λp ⊆ Vp, by Definition 7.6, each task in

{τ1(λp), . . . , τj(λp)} is also in {τ1(Vp), . . . , τz(j)−1(Vp)}. Therefore, by Definitions 7.5 and 7.7, Icup
j (λp) ⊆

Icup
z(j)−1(Vp), which by (7.7) implies that

j⋃
i=1

Idiff
i (λp) ⊆

z(j)−1⋃
i=1

Idiff
i (Vp)

By (7.16)
=====⇒ vij(λp) ≤ viz(j)−1(Vp).

This contradicts (7.19). Thus, the claim holds.

We now prove the lemma. We give a proof by induction on index j. Assume that the lemma holds for j − 1:

F (λp, j − 1) ≤ F (Vp, z(j − 1)− 1) +
x(j − 1)

Mp −∆z(j−1)(Vp)
. (7.20)

By (7.9), we have

F (λp, j) = F (λp, j − 1) +
vol(Idiff

j (λp))

Mp −∆j(λp)

≤ {By (7.20) and Claim 7.1}

F (Vp, z(j − 1)− 1) +
x(j − 1)

Mp −∆z(j−1)(Vp)
+

vol(Idiff
j (λp))

Mp −∆z(j)(Vp)
. (7.21)

To prove the lemma, we now express vol(Idiff
j (λp)) in (7.21) using the volume of a subset of tasks in

Vp. By (7.16), we have vol(Idiff
j (λp)) = vij(λp) − vij−1(λp). Applying the definition of z(·) and x(·)

in vij(λp) − vij−1(λp), we have vol(Idiff
j (λp)) = viz(j)−1(Vp) + x(j) − viz(j−1)−1(Vp) − x(j − 1) =∑z(j)−1

i=z(j−1) vol(I
diff
i (Vp)) + x(j)− x(j − 1). Dividing this equation by Mp −∆z(j)(Vp) yields

vol(Idiff
j (λp))

Mp −∆z(j)(Vp)
=

z(j)−1∑
i=z(j−1)

vol(Idiff
i (Vp))

Mp −∆z(j)(Vp)
+
x(j)− x(j − 1)

Mp −∆z(j)(Vp)

≤ {By Definition 7.6, for any i ≤ z(j),∆i(Vp) ≥ ∆z(j)(Vp)}

245

z(j)−1∑
i=z(j−1)

vol(Idiff
i (Vp))

Mp −∆i(Vp)
+

x(j)

Mp −∆z(j)(Vp)
− x(j − 1)

Mp −∆z(j−1)(Vp)
.

Applying the above inequality in (7.21), we have

F (λp, j) ≤ F (Vp, z(j − 1)− 1) +

z(j)−1∑
i=z(j−1)

vol(Idiff
i (Vp))

Mp −∆i(Vp)
+

x(j)

Mp −∆z(j)(Vp)

= {By (7.9)}

= F (Vp, z(j)− 1) +
x(j)

Mp −∆z(j)(Vp)
.

This completes the proof of the lemma.

Using (7.18) to upper bound F (λp, |λp|) requires determining y(|λp|) and x(|λp|). By Lemma 7.18

and (7.21), determining such values requires determining vi|λp|(λp) = vol(I(λp)). We upper bound

vol(I(λp)) by determining a path λmin(p) for which the volume of tasks on the pth CE is the minimum.

Since tasks on a path do not contribute to its interfering workload, for any λ, vol(I(λp)) does not exceed

vol(Vp)− vol(λmin(p)
p). Using the following definition, this is shown in Lemma 7.6.

Definition 7.10. For any 1 ≤ p ≤ µ, let Λp(G) be the set of all complete paths that have at least one task

assigned to the pth CE. Let λmin(p) be a path in Λp(G) with the minimum vol(λ
min(p)
p), i.e., λmin(p) =

argminλ∈Λp(G)(vol(λp)). ◀

Lemma 7.6. For any path λ and 1 ≤ p ≤ µ, vol(I(λp)) ≤ vol(Vp)− vol(λmin(p)
p).

Proof. If |λp| = 0, then vol(I(λp)) = 0, and the lemma trivially holds. Assuming |λp| > 0, by Defini-

tion 7.10, vol(λp) ≥ vol(λ
min(p)
p). Since each task in I(λp) executes on the pth CE, by Definition 7.5,

I(λp) ⊆ Vp. However, by Definition 7.5, I(λp) does not contain any task τi ∈ λp ⊆ Vp. Thus, vol(I(λp)) ≤

vol(Vp)−vol(λp) holds. Since, vol(λp) ≥ vol(λmin(p)
p), we have vol(I(λp)) ≤ vol(Vp)−vol(λmin(p)

p).

We now define the two terms h(p) and g(p) that can be used, instead of y(|λp|) and x(|λp|), to upper

bound F (λp, |λp|). Using these values, we upper bound F (λp, |λp|) in Lemma 7.7 by adding (potentially)

more terms in (7.18).

Definition 7.11. For any 1 ≤ p ≤ µ, let 1 ≤ h(p) ≤ |Vp| be the smallest integer with vol(Vp) −

vol(λ
min(p)
p) ≤ vih(p)(Vp) holds. Also, let g(p) = vol(Vp)− vol(λmin(p)

p)− vih(p)−1(Vp). ◀

246

Lemma 7.7. For any λ and 1 ≤ p ≤ µ, the following holds.

F (λp, |λp|) ≤ F (Vp, h(p)− 1) +
g(p)

Mp −∆h(p)(Vp)

Proof. Let y(|λp|) be the smallest integer so that vi|λp|(λp) ≤ viy(|λp|)(Vp) holds. Let x(|λp|) = vi|λp|(λp)−

viy(|λp|)−1(Vp). By Lemma 7.5, we have

F (λp, |λp|) ≤ F (Vp, y(|λp|)− 1) +
x(|λp|)

Mp −∆y(|λp|)(Vp)
. (7.22)

By (7.17), we have vol(I(λp)) = vi|λp|(λp). By Lemma 7.6, vol(I(λp)) = vi|λp|(λp) ≤ vol(Vp) −

vol(λ
min(p)
p). Therefore, by the definition of y(|λp|) and h(p), we have y(|λp|) ≤ h(p). We now consider

two cases.

Case 1. y(|λp|) = h(p). Since vol(I(λp)) = vi|λp|(λp) ≤ vol(Vp) − vol(λmin(p)
p), by the definition of

x(|λp|) and g(p), we have x(|λp|) ≤ g(p). Thus, the lemma holds by replacing y(|λp|) and x(|λp|) with

h(p) and g(p), respectively, in (7.22).

Case 2. y(|λp|) < h(p). By the definition of x(|λp|), x(|λp|) = vi|λp|(λp)−viy(|λp|)−1(Vp) ≤ viy(|λp|)(Vp)−

viy(|λp|)−1(Vp) = vol(Idiff
y(|λp|)(Vp)). Replacing x(|λp|) with vol(Idiff

y(|λp|)(Vp)) and adding additional non-

negative terms in (7.22), we have

F (λp, |λp|) ≤ F (Vp, y(|λp|)− 1) +
vol(Idiff

y(|λp|)(Vp))

Mp −∆y(|λp|)(Vp)
+

h(p)−1∑
i=y(|λp|)+1

vol(Idiff
i (Vp))

Mp −∆i(Vp)
+

g(p)

Mp −∆h(p)(Vp)

= F (Vp, h(p)− 1) +
g(p)

Mp −∆h(p)(Vp)
.

Thus, the lemma holds.

Using Lemma 7.7, we have the following theorem.

Theorem 7.2. G’s response time is bounded as follows:

R(G) ≤ len(G) +

µ∑
p=1

(
F (Vp, h(p)− 1) +

g(p)

Mp −∆h(p)(Vp)

)
, (7.23)

where len(G) denotes length of the longest path of G.

247

Proof. The theorem follows from applying len(G) = maxλ∈Λ(G) len(λ) and Lemma 7.7 in Theorem 7.1.

Running time. len(G) and each vol(λmin(p)
p) can be computed in O(V + E) time. For DAG, the set I(τi)

for all tasks can be computed in O(|V |2) time. Using precomputed I(τi) sets, for each task, each Idiff set

(to compute F (Vp, h(p)− 1)) can be computed in O(|V |) time. Since each task appears at most once in the

response-time bound expression in (7.23), computing all numerators in (7.23) takes O(|V |2) time. Since

computing all ∆i values takes O(|V |3maxp{Mp}) time, the total running time is O(|V |3maxp{Mp}).

7.5 Processor Allocation

In this section, we give an ILP to allocate processors among multiple DAGs. We consider DAGs

G1, G2, · · · , GN . For all introduced notation, we use a superscript k to denote the corresponding term for

the kth DAG Gk. We also assume that the pth CE hasMp processors.

For DAG Gk, let Rk
p,m denote the value

(
F (V k

p , h
k(p)− 1) + gk(p)

m−∆
hk(p)

(V k
p)

)
of (7.23) and len(Gk)

denote its longest-path length. Using this notation, the ILP is specified as follows.

Variables : For each pair of DAG Gk and pth CE, we defineMp variables xkp,1, x
k
p,2, · · · , xkp,Mp

. Variable

xkp,m is 1 if DAG Gk is assigned m processors on the pth CE, and 0 otherwise.

Constraint 1. For each pair of DAG and CE, exactly one xkp,m is 1 (the DAG receives m processors on that

CE):

∀k ∈ {1, · · · , N},∀p ∈ {1, · · · , µ} ::
Mp∑
m=1

xkp,m = 1.

Constraint 2. The total number of allocated processors per CE is at most the number of processors that CE

has:

∀p ∈ {1, · · · , µ} ::
N∑
k=1

Mp∑
m=1

m · xkp,m ≤Mp.

Constraint 3. On allocated processors, each DAG meets its deadline:

∀k ∈ {1, · · · , N} : len(Gk) +

µ∑
p=1

Mp∑
m=1

Rk
p,mx

k
p,m ≤ Dk.

The ILP has N
∑µ

p=1Mp variables and Nµ+N + µ constraints.

248

7.6 Experimental Evaluation

We now present the results of the experiments we conducted to evaluate the response-time bounds

of our approach. First, we compared schedulability under work-conserving and semi-work-conserving

scheduling for a DAG on an arbitrary number of processors. Second, for multicore+GPU platforms, we

compared schedulability under semi-work-conserving scheduling on GPUs with traditional locking-based

approaches [Ali et al., 2024]. Finally, we demonstrated the practicality of our approach via a case study on a

multicore+GPU platform.

7.6.1 Experiments on Arbitrary Number of CEs

In this experiment, we compared the response-time bounds in Theorem 7.2 under work-conserving and

semi-work-conserving schedulers. We generated DAGs following the Erdős-Rényi method [Cordeiro et al.,

2010]. The number of nodes per DAG was selected from [20, 120]. Each task’s WCET was chosen from

[50, 100]. For each pair of nodes (τi, τj) with i < j, an edge from τi to τj was added if a uniformly generated

random number in [0, 1] was at most a predefined edge-generation probability. We selected this probability

value from {0.1, 0.3, 0.5, 0.7, 0.9}. A higher edge-generation probability makes DAGs more sequential. As

in [Saifullah et al., 2014], additional edges were added to make each DAG weakly connected.

The number of CEs was randomly selected from [2, 6]. The number of processors per CE was selected

from {8, 16, 24, 32}, which represent common values in real-world use cases [Akesson et al., 2022; Kato et al.,

2018]. Each task was assigned to one of the CEs with uniform probabilities. We considered small, moderate,

or heavy degrees of parallelism, for which mi values were uniformly distributed in [1, 0.2Mγi], [1, 0.4Mγi],

and [1, 0.7Mγi], respectively, where Mγi is the number of processors on τi’s CE. For each combination of

edge-generation probabilities and degrees of parallelism, we generated 1,000 task sets.

We computed the average normalized response-time bound, which is the ratio between the response-time

bound under semi-work-conserving and work-conserving scheduling. Thus, normalized response-time

bounds less than 1.0 imply smaller response-time bounds under semi-work-conserving scheduling than under

work-conserving scheduling. The normalized response-time bounds are plotted in Figure 7.8.

Observation 7.1. For small, moderate, and heavy degrees of parallelism, the average response-time bounds

under semi-work-conserving scheduling were 1.001×, 1.005×, and 1.04× of those under work-conserving

scheduling, respectively.

249

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10

No
rm

al
ize

d
Bo

un
d

Semi-work-conserving-Small
Semi-work-conserving-Moderate
Semi-work-conserving-Heavy
Work-conserving-All

(a) Normalized bound vs. edge-generation probability.

20 40 60 80 100 120
Node Count

0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10

No
rm

al
ize

d
Bo

un
d

Semi-work-conserving-Small
Semi-work-conserving-Moderate
Semi-work-conserving-Heavy
Work-conserving-All

(b) Normalized bound vs. node count.

Figure 7.8: Results of experiments on arbitrary number of CEs.

For heavy degrees of parallelism, semi-work-conserving scheduling caused larger response-time bounds

compared to work-conserving scheduling. This is because the amount of wasted processing capacity (∆i

values) due to each task can often be larger for semi-work-conserving scheduling (see (7.5)). For smaller

edge-generation probabilities, the difference in response-time bounds between work-conserving and semi-

work-conserving scheduling increased. (see Figure 7.8(a)). This is because the interfering workload (the

summation term in (7.23)) contributed more significantly to the response-time bounds. Increasing the number

of nodes slightly increased the normalized response-time bounds (see Figure 7.8(b)). For small degrees of

parallelism, the response-time bounds under both work-conserving and semi-work-conserving scheduling

were close, as ∆i values under both scheduling were small. Note that semi-work-conserving scheduling

becomes work-conserving when all tasks have mi = 1.

250

7.6.2 Experiments on Multicore+GPU

In this experiment, we considered systems scheduled on multicore+GPU platforms. We compared

our response-time bounds under semi-work-conserving scheduling with a locking-based approach. Under

locking-based approach, each GPU access is protected by a lock, i.e., a GPU-accessing CPU task must hold a

lock before it can launch its GPU kernel. For the locking-based approach, we considered a recently proposed

locking protocol, called the SMLP, which allows multiple jobs to access a GPU simultaneously by allocating

SMs among them [Ali et al., 2024]. Under the SMLP, an upper bound on s-oblivious pi-blocking time can be

derived under any JLFP scheduling [Ali et al., 2024]. Using such a pi-blocking bound, DAG response-time

bounds can be derived by inflating task WCETs and then applying any s-oblivious response-time analysis

techniques for the used scheduling algorithm.

For the locking-based approach, we considered two state-of-the-art response-time bounds: RM-HE [He

et al., 2021] and WC-HE [He et al., 2022]. RM-HE considers prioritized list scheduling of a DAG of

sequential tasks and supports multi-DAG systems by prioritizing different DAGs by the rate-monotonic

algorithm. WC-HE applies under any work-conserving scheduler, where multiple DAGs are supported by

federated scheduling techniques.

Single-DAG systems. To describe task generation, we use NVIDIA-GPU-specific terms. Our GPU-specific

task parameter generation was inspired by prior work [Ali et al., 2024; Wang et al., 2024; Patel et al., 2018].

We considered platforms consisting of {8, 16, 24, 32} processors and {16, 32, 48} SMs, where each SM

consists of 2,048 GPU threads. We first generated coarse-grained DAG tasks consisting of sequential CPU

tasks by the same task-generation method given in Section 7.6.1, where we set µ = 1 and mi = 1 to

generate only CPU tasks. We randomly selected some CPU tasks as GPU-accessing tasks. We considered

small ([1–20]%), moderate ([20-50]%), and heavy ([50–80]%) ratios of GPU-accessing tasks. We generated

GPU-access lengths according to the method in [Ali et al., 2024]. The maximum GPU-access lengths were

selected uniformly from [0.1Ci, 0.7Ci]. By [Ali et al., 2024], a task’s maximum GPU-access length occurs

when the number of SMs allocated to the task is small. Similar to [Ali et al., 2024], for each GPU-accessing

task τi, we selected a value ρi, not exceeding the number of total SMs, that represents the maximum number

of SMs the task can utilize, i.e., GPU-access lengths do not increase if more SMs are allocated.

To apply our approach, we then generated fine-grained DAGs by splitting the GPU-accessing tasks

of coarse-grained DAGs. Each GPU-accessing task was split into two CPU tasks and multiple GPU

251

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
Bo

un
d

Our
RM_He
WC_He

(a) Normalized bound vs. edge-generation probability for light GPU-
access ratio.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

1.0
1.2
1.4
1.6
1.8
2.0
2.2

No
rm

al
ize

d
Bo

un
d

Our
RM_He
WC_He

(b) Normalized bound vs. edge-generation probability for moderate
GPU-access ratio.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge-Generation Probability

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
Bo

un
d

Our
RM_He
WC_He

(c) Normalized bound vs. edge-generation probability for heavy GPU-
access ratio.

Figure 7.9: Normalized bound vs. edge-generation probability.

blocks. Each block was a gang task, for which we selected block sizes (i.e., mi values) randomly from

{126, 256, 512, 1028}. The number of blocks was determined so that increasing the number by one required

252

20 40 60 80 100 120
Node Count

0.9

1.0

1.1

1.2

1.3

No
rm

al
ize

d
Bo

un
d

Our
RM_He
WC_He

(a) Normalized bound vs. node count for light GPU-access ratio.

20 40 60 80 100 120
Node Count

1.0
1.2
1.4
1.6
1.8
2.0
2.2

No
rm

al
ize

d
Bo

un
d

Our
RM_He
WC_He

(b) Normalized bound vs. node count for moderate GPU-access ratio.

20 40 60 80 100 120
Node Count

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
Bo

un
d

Our
RM_He
WC_He

(c) Normalized bound vs. node count for heavy GPU-access ratio.

Figure 7.10: Normalized bound vs. node count.

more the ρi SMs. Finally, edges were added from one CPU task to all GPU blocks and from all GPU

blocks to the other CPU task. For each combination of processor count, SM count, edge probabilities,

and GPU-accessing task ratios, we generated 1,000 task sets. We compared our bound (OUR) under semi-

253

work-conserving scheduling with RM-HE and WC-HE. Figures 7.9 and 7.10 present these three bounds

normalized with respect to OUR.

Observation 7.2. For small, moderate, and heavy GPU-accessing-task ratios, bounds under RM-HE (resp.,

WC-HE) were, on average, 1.24×, 2.07×, and 3.30× (resp., 1.25×, 2.09×, and 3.32×), respectively, of

those under OUR.

For systems with many GPU-accessing tasks, OUR gave much smaller response-time bounds than

RM-HE and WC-HE. Figure 7.9 shows this by plotting normalized bounds with respect to edge-generation

probabilities. The bounds of RM-HE and WC-HE were larger compared to OUR for larger edge-generation

probabilities. This is because of pi-blocking-related inflation of WCETs under RM-HE and WC-HE. With

large edge-generation probabilities, accumulated inflation of WCETs along the longest path of the DAG

became high.

Multi-DAG systems. In this section, we used the above single DAG-generation method iteratively to

generate multiple DAGs. For each processor count in {8, 16, 24, 32}, we generated task systems with coarse-

grained DAGs that have normalized utilizations, i.e., sum of all DAG utilizations over processor count, from

0.1 to 1 with a step size of 0.1. Similar to [He et al., 2021], we chose DAG G’s period uniformly from

[len(G), 6 · len(G)], where len(G) is its longest-path length. For each combination of processor count, SM

count, edge probabilities, and GPU-accessing task ratios, we generated 1,000 task sets. For each combination,

we determined the acceptance ratio, which gives the percentage of task systems that were schedulable under

each of OUR, RM-HE, and WC-HE. Figure 7.11 presents these acceptance ratios.

Observation 7.3. For small, moderate, and heavy GPU-accessing-task ratios, RM-HE (resp., WC-HE)

scheduled 14%, 19%, and 30% (resp., 15%, 22%, and 48%) of the systems compared to OUR, respectively.

Similar to single-DAG experiments, WCET inflations caused fewer systems to be schedulable under

RM-HE and WC-HE than OUR. However, as seen in Figure 7.11(a), WC-HE scheduled some systems

that OUR cannot. This is because light DAGs share processors under WC-HE, while our analysis requires

allocating a dedicated processor to each light DAG.

7.6.3 Case Study on Multicore+GPU

For this case study, we employed the pedestrian-detection algorithm Histogram of Oriented Gradients

(HOG) [Dalal and Triggs, 2005]. HOG computes gradients over each frame of a video feed via a series of

254

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

Our
HE_RM_21
HE_WC_22

(a) Acceptance ratio vs. normalized utilizations for light GPU-
access ratio.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

Our
HE_RM_21
HE_WC_22

(b) Acceptance ratio vs. normalized utilizations for moderate
GPU-access ratio.

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

Our
HE_RM_21
HE_WC_22

(c) Acceptance ratio vs. normalized utilizations for heavy GPU-
access ratio.

Figure 7.11: Results of multi-DAG experiments on multicore+GPU.

CUDA kernels, forming a DAG of gang tasks with sequential CPU and parallel GPU computations. These

experiments were conducted on a machine running a modified version of LITMUSRT [Brandenburg, 2011;

Calandrino et al., 2006], a Linux-based real-time kernel. The machine had a 3.5-GHz AMD Ryzen 9 3950X

16-Core Processor and one NVIDIA RTX 6000 Ada Generation GPU.

255

We considered both single- and multi-DAG scenarios. In both scenarios, we ran HOG under the locking-

based approach using the OMLP protocol [Brandenburg and Anderson, 2010a; Amert et al., 2021] and under

federated scheduling with the default semi-work-conserving scheduler [Bakita and Anderson, 2024]. In the

multi-DAG scenario, we ran four parallel HOG instances. We used libsmctrl [Bakita and Anderson,

2023] to partition GPU among the four HOG instances under federated scheduling. We measured response

times of 1,000 DAG jobs, each processing a video frame at five image-scale levels. In the single-DAG scenario,

under the locking-based approach and semi-work-conserving scheduling, the average (resp., maximum)

response time was 2.6ms (resp., 8.5ms) and 2.5ms (resp., 7.1ms), respectively. Thus, there was a 16.5%

reduction in maximum response time under the semi-work-conserving approach. For multiple DAGs, under

the locking-based approach and semi-work-conserving scheduling, the average (resp., maximum) response

time was 9.9ms (resp., 143.0ms) and 15.9ms (resp., 31.5ms), respectively.

7.7 Chapter Summary

In this chapter, we have considered the scheduling of DAGs composed of gang tasks on heterogeneous

processing platforms. We presented a polynomial-time response-time bound for such DAGs under any

scheduler that is either work-conserving or semi-work-conserving. We have also given an ILP formulation

to allocate processors among multiple DAGs. We have demonstrated the utility of our approach through

schedulability studies and a case study on a multicore+GPU platform.

Acknowledgment. The work presented in this chapter is the result of a collaboration between Shareef Ahmed

and Denver Massey. Ahmed derived the response-time bounds and implemented the schedulability studies

presented in Sections 7.6.1 and 7.6.2. Denver Massey performed the case study presented in Section 7.6.3.

256

CHAPTER 8: CONCLUSION

Scheduling and synchronization algorithms play a crucial role in ensuring the temporal correctness of

resource-constrained real-time systems. For such systems, these algorithms must be designed and analyzed to

utilize processing resources as efficiently as possible. Achieving high resource utilization while maintaining

temporal correctness is particularly challenging in today’s compute-heavy, highly parallel real-time systems.

This dissertation takes a step toward addressing this challenge by providing tighter analyses of scheduling

and synchronization algorithms. First, we derived tight and exact response-time bounds for pseudo-harmonic

periodic tasks, both with and without precedence constraints, under GEL scheduling. Second, we established

an improved pi-blocking lower bound for a class of non-FIFO GEL schedulers, showing that existing

asymptotically optimal suspension-based locking protocols incur pi-blocking that exceeds the optimal bound

by at most one request length. We also devised an optimal suspension-based locking protocol for FIFO

scheduling. Finally, we provided response-time analyses for gang tasks, with and without precedence

constraints.

The remainder of this chapter summarizes our results (Section 8.1), describes other related work

conducted in parallel but beyond the scope of this dissertation (Section 8.2), and outlines directions for future

work (Section 8.3).

8.1 Summary of Results

In this section, we provide a summary of the results presented in this dissertation.

Tight and exact response-time analysis. Existing response-time analyses for the G-EDF scheduling of

sequential tasks are not tight. Moreover, these analyses tend to be restrictive for large systems, as the

derived response-time bounds typically increase with the number of processors in highly utilized platforms.

This pessimism becomes even more pronounced for graph-based tasks, where source-to-sink response-time

requirements further amplify the bounds.

In Chapter 3, we presented a tight response-time bound for a class of periodic tasks, called pseudo-

harmonic tasks, under GEL schedulers. The derived bound does not depend on the number of tasks or

257

processors, but only on task parameters. Furthermore, the bound has a closed-form expression and can be

computed in linear time. Our tightness result implies that it is unlikely to obtain an empirically tighter bound

without resorting to more computationally expensive response-time analysis.

Also in Chapter 3, we showed how to derive the exact response-time bound for a periodic system

scheduled by GEL schedulers. Our method requires simulating the system schedule over a finite time interval

and can be executed in pseudo-polynomial time for pseudo-harmonic systems. In Chapter 4, we extended

these simulation-based techniques to systems with precedence constraints among tasks and self-dependencies

among task instances.

Tight pi-blocking lower and upper bounds. Suspension-based locking protocols are common for dealing

with mutex resources. Many suspension-based multiprocessor locking protocols provide asymptotically

optimal pi-blocking bounds under JLFP schedulers. However, since the inception of the first such protocol

15 years ago [Brandenburg and Anderson, 2010a], locking protocols that achieve truly optimal pi-blocking

bounds have remained elusive. Additionally, we presented an optimal multiprocessor locking protocol for

k-exclusion sharing and a phase-fair locking protocol for reader-writer sharing that exceeds the optimal

pi-blocking bound by only two request access lengths. Finally, for mutex sharing under G-EDF scheduling,

we showed that some existing locking protocols actually provide pi-blocking bounds that exceed the optimal

bound by only a single resource access length, thereby resolving the long-standing mystery regarding a factor

of two in existing pi-blocking bounds.

Scheduling gang tasks. The scheduling and analysis of gang tasks have become increasingly important due

to their relevance in systems equipped with hardware accelerators such as GPUs. Despite this significance,

the scheduling of SRT gang tasks has received relatively little attention. In Chapter 6, we showed that

determining the SRT-feasibility of a set of rigid gang tasks on an identical multiprocessor is NP-hard. We

also demonstrated that, although G-EDF is SRT-optimal for scheduling sequential and DAG tasks, it is not

for scheduling rigid gang tasks. Finally, we presented an SRT-schedulability test for rigid gang tasks under

G-EDF that theoretically dominates the existing test by Dong et al. [Dong et al., 2021].

In Chapter 7, we presented a response-time analysis for rigid gang tasks with precedence constraints

scheduled on a heterogeneous compute platform comprising multiple computational resources. This task

model captures the behavior of AI-based systems that form processing graphs and are deployed on multi-

processor platforms augmented with hardware accelerators. We provided response-time analysis under both

258

work-conserving and semi-work-conserving schedulers. Our choice of scheduler classes is motivated by

the observation that common CPU scheduling policies are typically work-conserving, whereas default GPU

scheduling policies tend to be semi-work-conserving under certain restrictions. Through empirical evaluation,

we demonstrated that accessing GPUs without locks can offer schedulability benefits when our response-time

analysis is used.

8.2 Other Work

This section summarizes additional research contributions, beyond the scope of this dissertation, in which

the author has been involved.

Semi-clustered scheduling of SRT sporadic tasks. Although existing response-time bounds for sporadic

tasks under G-EDF and its variants scale with the number of processors, these bounds tend to be relatively

tight when the processor count is small. Based on this observation, we proposed a semi-clustered scheduler

named SC-EDF [Ahmed and Anderson, 2020]. Under this scheduler, tasks are partitioned into small clusters,

where each cluster’s size is determined by the total utilization of the tasks within it. A cluster with utilization

Uc is allocated ⌊Uc⌋ dedicated processors on which only its tasks execute. However, to ensure bounded

response times, each cluster also requires additional fractional processing capacity beyond its dedicated

processors. This remaining capacity is supplied by a set of globally shared processors accessible by all clusters.

To provide this fractional capacity, SC-EDF creates a periodic server for each cluster whose utilization

matches or exceeds the additional capacity required. These servers are scheduled using an HRT-optimal Pfair

scheduler [Baruah et al., 1995].

SRT-feasibility of rp-sporadic tasks on heterogeneous multiprocessors. SRT-feasibility conditions for

scheduling sporadic tasks are known for systems where tasks exhibit no intra-task parallelism, i.e., when

all Pi values are one, on heterogeneous multiprocessors. In [Massey et al., 2024], we extended these SRT-

feasibility conditions to support sporadic tasks with arbitrary levels of parallelism under various heterogeneous

multiprocessor models. To derive such conditions, we introduced a method to analytically transform a task

set with arbitrary parallelism into an equivalent set of tasks without intra-task parallelism. Using these

transformed task sets, we provided necessary and sufficient conditions for SRT-feasibility under both the

uniform and unrelated multiprocessor models.

259

Non-decomposition-based optimal SRT scheduling of a DAG task. Scheduling algorithms that ensure

bounded response times for DAG tasks without incurring capacity loss usually rely on decomposition-based

techniques. As noted earlier, such approaches compute the response-time bound of a DAG task by summing

pessimistic bounds of individual nodes along a path in the DAG. In [Ahmed and Anderson, 2025], we gave a

scheduling algorithm for a DAG task that does not require decomposition-based techniques. The key idea to

enable such an approach is to elevate priority of certain jobs of a DAG job by means of priority boosting.

Budget management. As seen in Chapters 3–7, schedulability-analysis techniques typically rely on precise

WCET estimates of tasks. Unfortunately, on multicore systems, obtaining accurate WCET estimates that are

not overly pessimistic via static code analysis is not viable [Wilhelm, 2020]. The only practical alternative is

to use measurement-based timing analysis, which has been the focus of considerable recent research [Cazorla

et al., 2019; Davis and Cucu-Grosjean, 2019]. However, with measurement-based analysis, one can never

be certain that the true WCET of a task has been observed. As a result, schedulability analysis based on

such estimates can lead to incorrect conclusions, and crucially, whether those conclusions are wrong may be

unknowable. Thus, real-time systems should be equipped with runtime mechanisms to deal with overrunning

jobs that execute for more than their WCET estimantes. One way to deal with such overrunning jobs is to

assign budgets (based on WCET estimates) to tasks and enforce these budgets at runtime.

In [Tong et al., 2022], we presented budget-enforcement techniques for sporadic tasks that use mutex

resources. In such systems, budget enforcement is required at both the job and CS levels; that is, each job and

each CS is assigned a budget and cannot execute beyond it. Enforcing job-level budgets becomes challenging

in the presence of CSs, as a job may exhaust its budget while executing within a CS. To allow safe abortion

of a job upon budget exhaustion, we used the concept of a forbidden zone [Holman and Anderson, 2006],

which prevents a job from issuing a resource request unless it has sufficient remaining budget to complete the

CS. Importantly, this “sufficient” budget includes not only the execution time of the CS code itself but also

the time required for lock acquisition, lock release, and budget-management overhead. We showed how to

compute forbidden zones by accounting for these components under both spin-based and suspension-based

locking protocols. Additionally, to enforce budgets at the CS level, we designed abortable CSs that linearize

the computation of a shared-data-accessing CS to a single write instruction.

In [Tong et al., 2023], we presented budget-management techniques for DAG tasks. To address the

challenge of job overruns at runtime due to inaccurate WCET estimates, one approach is to enforce per-node

260

budgets. However, if a job is aborted when it overruns, the entire DAG invocation corresponding to that

job typically becomes logically incorrect and must be aborted. This can significantly magnify the effects

of individual job overruns. For example, a node failure rate of just 0.1% can lead to a DAG failure rate of

36.8% (assuming independent and identically distributed probabilities) for a graph with 1,000 nodes [Amert

et al., 2021]—a scale that is plausible in AI-based applications. To reduce DAG failure rates, we proposed

budget reallocation techniques under server-based scheduling, as discussed in Chapter 4. Our approach

allows an overrunning job to complete execution using budget from servers of its successor nodes. This is

motivated by the observation that not all nodes in a DAG tend to fully consume their budgets, suggesting that

unused budget from some nodes can be reallocated to support overrunning jobs. Additionally, we introduced

slack-allocation policies that proactively utilize slack from underrunning jobs to help execute their successors

when possible.

Simultaneous multithreading in real-time systems. Today, many multicore platforms support multiple

(often two) hardware threads per core that can execute tasks concurrently—a feature known as simultaneous

multithreading (SMT). While SMT can enhance computing capacity, it has been largely avoided in real-time

systems research due to concerns about interference between tasks sharing a core. In [Osborne et al., 2020],

we demonstrated for the first time how SMT can be leveraged for priority-driven preemptive scheduling

of HRT systems. To safely utilize SMT, we proposed an ILP that pairs tasks with the same periods based

on their “SMT-friendliness,” i.e., tasks are co-scheduled only when their combined execution times rarely

exceed the sum of their solo execution times. Once pairing decisions are made, all tasks are partitioned and

scheduled under P-EDF scheduling.

In [Bakita et al., 2021], we applied SMT to mixed-criticality systems, where tasks may have different

criticalities. A task’s criticality typically reflects the severity of its failure—higher-criticality tasks can

cause catastrophic consequences if they fail. As a result, higher-criticality tasks have hard deadlines, while

lower-criticality tasks have soft deadlines. To apply SMT in mixed-criticality systems, we determined the

pairing of HRT tasks using an ILP similar to the one proposed in [Osborne et al., 2020]. For SRT tasks, static

task pairing is not necessary to ensure bounded response times. Instead, we identified a set of “SMT-friendly”

tasks and assigned these tasks to clusters of processors, allowing any pair within a cluster to be co-scheduled.

We implemented this scheduling approach in an open-source framework called MC2 (mixed-criticality on

multicore) [Anderson et al., 2009; Mollison et al., 2010], which includes support for SMT on SMT-capable

261

multicore platforms. Additionally, features to mitigate cache and memory interference were re-implemented

on SMT-capable multicore platforms to evaluate the effect of SMT under various cache allocations.

Flexible scheduling in Robot Operating System 2. The Robot Operating System 2 (ROS) is widely used

in autonomous systems due to its large ecosystem and modular design. However, ROS poses challenges

for real-time applications because of the implementation of the ROS executor. In particular, the ROS

executor does not support preemption or user-specified priorities, both of which are fundamental to real-time

scheduling. Prior ROS variants have individually supported preemption or prioritization of callbacks, but

they impose restrictions on applications that prevent their adoption in real-world workloads. In [Liu et al.,

2025], we addressed these limitations by proposing a novel executor framework, ROSRT, which is compatible

with any type of ROS application while supporting preemptive, priority-driven scheduling. Furthermore, to

enable flexible EDF scheduling in ROSRT, we implemented a custom EDF scheduler using the new Linux

scheduling class SCHED EXT. ROSRT not only enables real-time compatibility but also achieves a significant

reduction in publisher-to-subscriber overhead compared to the native ROS executor.

8.3 Future Work

Finally, we conclude by discussing several directions for future work to extend the work presented in this

dissertation.

Tight response-time bounds. Although this dissertation presents a tight response-time bound for pseudo-

harmonic tasks under G-EDF and its variants, deriving tight bounds that apply to general periodic or sporadic

task systems remains an open problem. For heterogeneous multiprocessors, this problem becomes even

more challenging. In addition to scaling with the processor count, existing response-time bounds [Devi

and Anderson, 2008; Erickson et al., 2014; Valente, 2016] for G-EDF scheduling on heterogeneous multi-

processors can become excessively large when the system includes a task with very low utilization. This

behavior is unintuitive: adding a very low-utilization task to a system with many high-utilization tasks

should not significantly increase their response times. Finally, whether G-EDF is SRT-optimal on unrelated

multiprocessors also remains an open problem [Tang, 2024].

Existing variants of G-EDF that are SRT-optimal on heterogeneous multiprocessors may require frequent

migrations to ensure that each job is scheduled on processors with sufficiently high speeds. In practice, the

overheads associated with such migrations can be prohibitively costly. Therefore, it may be desirable to

262

design variants of G-EDF that reduce migration frequency, even at the cost of sacrificing SRT-optimality.

Doing so would require deriving corresponding conditions for bounded response times under such schedulers.

Non-decomposition-based SRT DAG scheduling of multiple DAG tasks. Although in [Ahmed and

Anderson, 2025], we gave a non-decomposition-based SRT-optimal scheduler for a single DAG, no such

scheduler is known for multiple DAG tasks. Devising such a scheduler can yield significant schedulability

benefits. However, analyzing multi-DAG systems becomes significantly more complex in the presence of the

various features listed in Table 2.3. In particular, self-dependencies are difficult to handle, as a task may be

delayed by its own prior jobs even when not all processors are busy. Moreover, how to prioritize different

jobs to ensure bounded response times for all DAGs is not well understood.

Tight pi-blocking bounds. In Chapter 5, we established a lower bound of 2M − 2 request lengths on

per-request pi-blocking under a class of non-FIFO GEL schedulers. Deriving a similar lower bound for

clustered scheduling (and by extension, partitioned scheduling) is more complex. This is because a locking

protocol may not satisfy lock requests uniformly across all clusters; that is, more requests from one cluster

may be satisfied within a given time interval compared to others. Since pi-blocking is defined based on per-

cluster priorities in clustered scheduling, a lower-bound proof must account for such non-uniform execution

scenarios while ensuring that each cluster has enough tasks so that c (cluster size) jobs per cluster can be

pi-blocked at any given time. Although the proof becomes more intricate, we believe that a similar lower

bound also applies under clustered non-FIFO GEL schedulers. Furthermore, our current lower-bound proof

assumes one lock request per job. When jobs issue multiple lock requests, deriving a tight lower bound

becomes even more challenging.

Gang scheduling. Compared to sequential and DAG tasks, the scheduling of gang tasks has received less

attention in the real-time systems literature. This dissertation also contributes to the study of gang scheduling

in various contexts. For example, work-conserving non-preemptive scheduling of gang tasks can cause

a transitive blocking effect, where a higher-priority job may be repeatedly pi-blocked by lower-priority

jobs. While recent work has addressed this issue for HRT systems [Lee et al., 2022a; Dong and Liu, 2022],

no existing work considers SRT gang tasks. Moreover, semi-work-conserving schedulers, introduced in

Chapter 7, may eliminate transitive blocking and thus warrant further investigation. Gang scheduling under

the rp model introduces additional complexity in quantifying parallelism-induced idleness, as a job may be

blocked due to the execution of one of its own prior jobs. Finally, gang tasks with precedence constraints

263

are highly relevant to modern systems, but it remains an open question how to handle all the complexities

outlined in Table 2.3 when scheduling such tasks.

264

BIBLIOGRAPHY

Afshar, S., Nemati, F., and Nolte, T. (2012). Towards Resource Sharing Under Multiprocessor Semi-
Partitioned Scheduling. In Proceedings of the 7th IEEE International Symposium on Industrial Embedded
Systems, pages 315–318.

Ahmed, S. and Anderson, J. (2020). A Soft-Real-Time-Optimal Semi-Clustered Scheduler with a Constant
Tardiness Bound. In Proceedings of the 26th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 1–10.

Ahmed, S. and Anderson, J. (2021). Tight Tardiness Bounds for Pseudo-Harmonic Tasks Under Global-
EDF-Like Schedulers. In Proceedings of the 33rd Euromicro Conference on Real-Time Systems, pages
11:1–11:24.

Ahmed, S. and Anderson, J. (2022). Exact Response-Time Bounds of Periodic DAG Tasks under Server-Based
Global Scheduling. In Proceedings of the 43rd IEEE Real-Time Systems Symposium, pages 447–459.

Ahmed, S. and Anderson, J. (2023a). Optimal Multiprocessor Locking Protocols Under FIFO Scheduling. In
Proceedings of the 35th Euromicro Conference on Real-Time Systems, pages 16:1–16:21.

Ahmed, S. and Anderson, J. (2023b). Soft Real-Time Gang Scheduling. In Proceedings of the 44th IEEE
Real-Time Systems Symposium, pages 331–343.

Ahmed, S. and Anderson, J. (2024). Open Problem Resolved: The “Two” in Existing Multiprocessor
PI-Blocking Bounds Is Fundamental. In Proceedings of the 36th Euromicro Conference on Real-Time
Systems, pages 11:1–11:21.

Ahmed, S. and Anderson, J. (2025). A Soft-Real-Time Optimal Scheduler for DAG Tasks with Node-Level
Self Dependencies. In Proceedings of the 46th IEEE Real-Time Systems Symposium. to appear.

Ahmed, S., Massey, D., and Anderson, J. (2025). Scheduling Processing Graphs of Gang Tasks on Heteroge-
neous Platforms. In Proceedings of the 31st IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 362–374.

Akesson, B., Nasri, M., Nelissen, G., Altmeyer, S., and Davis, R. I. (2022). A Comprehensive Survey of
Industry Practice in Real-Time Systems. Real-Time Systems, 58(3):358–398.

Ali, S. W., Tong, Z., Goh, J., and Anderson, J. (2024). Predictable GPU Sharing in Component-Based
Real-Time Systems. In Proceedings of the 36th Euromicro Conference on Real-Time Systems, pages
15:1–15:22.

Ali, W., Pellizzoni, R., and Yun, H. (2021). Virtual Gang Scheduling of Parallel Real-Time Tasks. In
Proceedings of the 25th Design, Automation and Test in Europe Conference, pages 270–275.

Amert, T., Otterness, N., Yang, M., Anderson, J., and Smith, F. D. (2017). GPU Scheduling on the NVIDIA
TX2: Hidden Details Revealed. In Proceedings of the 38th IEEE Real-Time Systems Symposium, pages
104–115.

Amert, T., Tong, Z., Voronov, S., Bakita, J., Smith, F. D., and Anderson, J. (2021). TimeWall: Enabling Time
Partitioning for Real-Time Multicore+Accelerator Platforms. In Proceedings of the 42nd IEEE Real-Time
Systems Symposium, pages 455–468.

265

Amert, T., Voronov, S., and Anderson, J. (2019). OpenVX and Real-Time Certification: The Troublesome
History. In Proceedings of the 40th IEEE Real-Time Systems Symposium, pages 312–325.

Anderson, J., Baruah, S., and Brandenburg, B. (2009). Multicore operating-system support for mixed
criticality. In Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification.

Anderson, J., Erickson, J. P., Devi, U., and Casses, B. N. (2014). Optimal Semi-Partitioned Scheduling in
Soft Real-Time Systems. In Proceedings of the 20th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 1–10.

Anderson, J. and Srinivasan, A. (2000). Early-Release Fair Scheduling. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems, pages 35–43.

Anderson, J. and Srinivasan, A. (2004). Mixed Pfair/ERfair Scheduling of Asynchronous Periodic Tasks.
Journal of Computer and System Sciences, 68(1):157–204.

Andersson, B. and Bletsas, K. (2008). Sporadic Multiprocessor Scheduling with Few Preemptions. In
Proceedings of the 20th Euromicro Conference on Real-Time Systems, pages 243–252.

Andersson, B. and Tovar, E. (2006). Multiprocessor Scheduling with Few Preemptions. In Proceedings of the
12th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,
pages 322–334.

Anssi, S., Kuntz, S., Gérard, S., and Terrier, F. (2013). On the Gap between Schedulability Tests and an
Automotive Task Model. Journal of Systems Architecture, 59(6):341–350.

Baker, T. P. and Cirinei, M. (2007). Brute-Force Determination of Multiprocessor Schedulability for Sets
of Sporadic Hard-Deadline Tasks. In Proceedings of the 11th International Conference on Principles of
Distributed Systems, pages 62–75.

Bakita, J., Ahmed, S., Osborne, S. H., Tang, S., Chen, J., Smith, F. D., and Anderson, J. (2021). Simultaneous
Multithreading in Mixed-Criticality Real-Time Systems. In Proceedings of the 27th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 278–291.

Bakita, J. and Anderson, J. (2023). Hardware Compute Partitioning on NVIDIA GPUs. In Proceedings of
the 29th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 54–66.

Bakita, J. and Anderson, J. (2024). Demystifying NVIDIA GPU Internals to Enable Reliable GPU Manage-
ment. In Proceedings of the 30th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 294–305.

Baro, J., Boniol, F., Cordovilla, M., Noulard, E., and Pagetti, C. (2012). Off-line (Optimal) Multiprocessor
Scheduling of Dependent Periodic Tasks. In Proceedings of the ACM Symposium on Applied Computing,
pages 1815–1820.

Baruah, S. (2014). Improved Multiprocessor Global Schedulability Analysis of Sporadic DAG Task Systems.
In Proceedings of the 26th Euromicro Conference on Real-Time Systems, pages 97–105.

Baruah, S. (2015a). The federated scheduling of constrained-deadline sporadic DAG task systems. In
Proceedings of the 19th Design, Automation and Test in Europe Conference, pages 1323–1328.

Baruah, S. (2015b). Federated Scheduling of Sporadic DAG Task Systems. In Proceedings of the 2015 IEEE
18th International Symposium on Real-Time Distributed Computing, pages 179–186.

266

Baruah, S. (2020). Scheduling DAGs When Processor Assignments Are Specified. In Proceedings of the
28th International Conference on Real-Time Networks and Systems, page 111–116.

Baruah, S. (2021). Feasibility Analysis of Conditional DAG Tasks is co-NPNP-Hard. In Proceedings of the
29th International Conference on Real-Time Networks and Systems, page 165–172.

Baruah, S., Bonifaci, V., and Marchetti-Spaccamela, A. (2015). The Global EDF Scheduling of Systems
of Conditional Sporadic DAG Tasks. In Proceedings of the 27th Euromicro Conference on Real-Time
Systems, pages 222–231.

Baruah, S. and Burns, A. (2006). Sustainable Scheduling Analysis. In Proceedings of the 27th IEEE
International Real-Time Systems Symposium, pages 159–168.

Baruah, S., Cohen, N. K., Plaxton, C. G., and Varvel, D. A. (1996). Proportionate Progress: A Notion of
Fairness in Resource Allocation. Algorithmica, 15(6):600–625.

Baruah, S. K., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., and Wiese, A. (2012). A Generalized
Parallel Task Model for Recurrent Real-time Processes. In Proceedings of the 33rd IEEE Real-Time
Systems Symposium, pages 63–72.

Baruah, S. K., Gehrke, J., and Plaxton, C. G. (1995). Fast Scheduling of Periodic Tasks on Multiple Resources.
In Proceedings of the 9th International Parallel Processing Symposium, pages 280–288.

Bedarkar, K., Vardishvili, M., Bozhko, S., Maida, M., and Brandenburg, B. (2022). From Intuition to Coq: A
Case Study in Verified Response-Time Analysis of FIFO Scheduling. In Proceedings of the 43rd IEEE
Real-Time Systems Symposium, pages 197–210.

Bhuiyan, A., Yang, K., Arefin, S., Saifullah, A., Guan, N., and Guo, Z. (2019). Mixed-Criticality Multicore
Scheduling of Real-Time Gang Task Systems. In Proceedings of the 40th IEEE Real-Time Systems
Symposium, pages 469–480.

Biondi, A. and Buttazzo, G. C. (2017). Timing-Aware FPGA Partitioning for Real-Time Applications
Under Dynamic Partial Reconfiguration. In Proceedings of the 2017 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 172–179.

Blazewicz, J., Drabowski, M., and Weglarz, J. (1986). Scheduling Multiprocessor Tasks to Minimize
Schedule Length. IEEE Transactions on Computers, C-35(5):389–393.

Bletsas, K. and Andersson, B. (2009). Preemption-Light Multiprocessor Scheduling of Sporadic Tasks with
High Utilisation Bound. In Proceedings of the 30th IEEE Real-Time Systems Symposium, pages 447–456.

Block, A., Leontyev, H., Brandenburg, B., and Anderson, J. (2007). A Flexible Real-Time Locking Protocol
for Multiprocessors. In Proceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 47–56.

Bonifaci, V. and Marchetti-Spaccamela, A. (2025). Feasibility Analysis of Recurrent DAG Tasks is PSPACE-
Hard. Theoretical Computer Science, 1030(C):115062.

Bonifaci, V., Marchetti-Spaccamela, A., Megow, N., and Wiese, A. (2013a). Polynomial-Time Exact
Schedulability Tests for Harmonic Real-Time Tasks. In Proceedings of the 34th IEEE Real-Time Systems
Symposium, pages 236–245.

267

Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., and Wiese, A. (2013b). Feasibility Analysis in the
Sporadic DAG Task Model. In Proceedings of the 25th Euromicro Conference on Real-Time Systems,
pages 225–233.

Brandenburg, B. (2011). Scheduling and Locking in Multiprocessor Real-time Operating Systems. PhD
thesis, University of North Carolina at Chapel Hill.

Brandenburg, B. (2013a). A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive
Real-Time Applications. In Proceedings of the 25th Euromicro Conference on Real-Time Systems, pages
292–302.

Brandenburg, B. (2013b). Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP
Scheduling. In Proceedings of the 19th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 141–152.

Brandenburg, B. (2014). The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for
Suspension-Aware Analysis. In Proceedings of the 26th Euromicro Conference on Real-Time Systems,
pages 61–71.

Brandenburg, B. and Anderson, J. (2009). On the Implementation of Global Real-Time Schedulers. In
Proceedings of the 30th IEEE Real-Time Systems Symposium, pages 214–224.

Brandenburg, B. and Anderson, J. (2010a). Optimality Results for Multiprocessor Real-Time Locking. In
Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 49–60.

Brandenburg, B. and Anderson, J. (2010b). Spin-Based Reader-Writer Synchronization for Multiprocessor
Real-Time Systems. Real-Time Systems, 46(1):25–87.

Brandenburg, B. and Anderson, J. (2011). Real-Time Resource-Sharing under Clustered Scheduling: Mutex,
Reader-Writer, and k-Exclusion Locks. In Proceedings of the 11th International Conference on Embedded
Software, pages 69–78.

Brandenburg, B. and Anderson, J. (2014). The OMLP Family of Optimal Multiprocessor Real-Time Locking
Protocols. Design Automation for Embedded Systems, 17(2):277–342.

Brandenburg, B., Calandrino, J. M., and Anderson, J. (2008). On the Scalability of Real-Time Scheduling
Algorithms on Multicore Platforms: A Case Study. In Proceedings of the 29th IEEE Real-Time Systems
Symposium, pages 157–169.

Busquets-Mataix, J. V., Serrano, J. J., Ors, R., Gil, P. J., and Wellings, A. J. (1996). Using Harmonic Task-Sets
to Increase the Schedulable Utilization of Cache-Based Preemptive Real-Time Systems. In Proceedings of
the 3rd International Workshop on Real-Time Computing Systems Application, pages 195–202.

Buzzega, G. and Montangero, M. (2024). Characterizing Global Work-Conserving Scheduling Tardiness
with Uniform Instances on Multiprocessors. Real-Time Systems, 60(4):537–569.

Buzzega, G., Nocetti, G., and Montangero, M. (2023). Characterizing G-EDF scheduling tardiness with
uniform instances on multiprocessors. In Proceedings of the 31st International Conference on Real-Time
Networks and Systems, pages 45–55.

Calandrino, J. M., Leontyev, H., Block, A., Devi, U., and Anderson, J. (2006). LITMUSRT : A Testbed for
Empirically Comparing Real-Time Multiprocessor Schedulers. In Proceedings of the 27th IEEE Real-Time
Systems Symposium, pages 111–126.

268

Caranddriver (2020). Electronics Account for 40 Percent of the Cost of a New Car, Online
available=https://www.caranddriver.com/features/a32034437/computer-chips-in-cars/.

Cazorla, F., Kosmidis, L., Mezzetti, E., Hernandez, C., Abella, J., and Vardanega, T. (2019). Probabilistic
Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey. ACM Computing Surveys, 52(1):14:1–
14:35.

Chang, S., Bi, R., Sun, J., Liu, W., Yu, Q., Deng, Q., and Gu, Z. (2022). Toward Minimum WCRT Bound for
DAG Tasks Under Prioritized List Scheduling Algorithms. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 41(11):3874–3885.

Chang, S., Zhao, X., Liu, Z., and Deng, Q. (2020). Real-Time Scheduling and Analysis of Parallel Tasks on
Heterogeneous Multi-cores. Journal of Systems Architecture, 105:101704.

Cho, H., Ravindran, B., and Jensen, E. D. (2006). An Optimal Real-Time Scheduling Algorithm for
Multiprocessors. In Proceedings of the 27th IEEE International Real-Time Systems Symposium, pages
101–110.

Collette, S., Cucu, L., and Goossens, J. (2008). Integrating Job Parallelism in Real-Time Scheduling Theory.
Information Processing Letters, 106(5):180–187.

Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J., and Wagner, F. (2010). Random Graph
Generation for Scheduling Simulations. In Proceedings of the 2nd EAI International Conference on
Simulation Tools and Techniques, page 60.

Cucu, L. and Goossens, J. (2006). Feasibility Intervals for Fixed-Priority Real-Time Scheduling on Uniform
Multiprocessors. In Proceedings of 11th IEEE International Conference on Emerging Technologies and
Factory Automation, pages 397–404.

Cucu-Grosjean, L. and Goossens, J. (2007). Feasibility Intervals for Multiprocessor Fixed-Priority Scheduling
of Arbitrary Deadline Periodic Systems. In Proceedings of the 11th Design, Automation and Test in Europe
Conference, pages 1635–1640.

Cucu-Grosjean, L. and Goossens, J. (2011). Exact Schedulability Tests for Real-Time Scheduling of Periodic
Tasks on Unrelated Multiprocessor Platforms. Journal of Systems Architecture, 57(5):561–569.

Dalal, N. and Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. In Proceedings of
the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 886–893.

Davis, R. and Cucu-Grosjean, L. (2019). A Survey of Probabilistic Timing Analysis Techniques for Real-Time
Systems. Leibniz Transactions on Embedded Systems, 6(1):03:1–03:60.

Dertouzos, M. (1973). Control Robotics: the Procedural Control of Physical Processes.

Dertouzos, M. and Mok, A. K. (1989). Multiprocessor Online Scheduling of Hard-Real-Time Tasks. IEEE
Transactions on Software Engineering, 15(12):1497–1506.

Devi, U. and Anderson, J. (2005). Tardiness Bounds under Global EDF Scheduling on a Multiprocessor. In
Proceedings of the 26th IEEE Real-Time Systems Symposium, pages 330–341.

Devi, U. and Anderson, J. (2008). Tardiness Bounds under Global EDF Scheduling on a Multiprocessor.
Real-Time Systems, 38(2):133–189.

269

Dong, Z. and Liu, C. (2019). Analysis Techniques for Supporting Hard Real-Time Sporadic Gang Task
Systems. Real-Time Systems, 55(3):641–666.

Dong, Z. and Liu, C. (2022). A Utilization-Based Test for Non-Preemptive Gang Tasks on Multiprocessors.
In Proceedings of the 43rd IEEE Real-Time Systems Symposium, pages 105–117.

Dong, Z., Yang, K., Fisher, N., and Liu, C. (2021). Tardiness Bounds for Sporadic Gang Tasks Under
Preemptive Global EDF Scheduling. IEEE Transactions on Parallel and Distributed Systems, 32(12):2867–
2879.

Easwaran, A. and Andersson, B. (2009). Resource Sharing in Global Fixed-Priority Preemptive Multiproces-
sor Scheduling. In Proceedings of the 30th IEEE Real-Time Systems Symposium, pages 377–386.

Eisenbrand, F. and Rothvoß, T. (2008). Static-Priority Real-Time Scheduling: Response Time Computation
Is NP-Hard. In Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 397–406.

Eisenbrand, F. and Rothvoß, T. (2010). EDF-schedulability of Synchronous Periodic Task Systems is
coNP-hard. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1029–1034.

Ekberg, P. (2020). Rate-Monotonic Schedulability of Implicit-Deadline Tasks is NP-hard Beyond Liu and
Layland’s Bound. In Proceedings of the 41st Real-Time Systems Symposium, pages 308–318.

Ekberg, P. and Yi, W. (2015). Uniprocessor Feasibility of Sporadic Tasks with Constrained Deadlines is
Strongly coNP-Complete. In Proceedings of the 27th Euromicro Conference on Real-Time Systems, pages
281–286.

Ekberg, P. and Yi, W. (2017). Fixed-Priority Schedulability of Sporadic Tasks on Uniprocessors is NP-hard.
In Proceedings of the 38th Real-Time Systems Symposium, pages 139–146.

Elliott, G. and Anderson, J. (2013). An Optimal k-Exclusion Real-Time Locking Protocol Motivated by
Multi-GPU Systems. Real-Time Systems, 49(2):140–170.

Emberson, P., Stafford, R., and Davis, R. (2010). Techniques for the Synthesis of Multiprocessor Tasksets. In
Proceedings of the 2nd International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems, pages 6–11.

Erickson, J. and Anderson, J. (2011). Response Time Bounds for G-EDF Without Intra-Task Precedence
Constraints. In Proceedings of the 15th International Conference On Principles Of Distributed Systems,
pages 128–142.

Erickson, J. and Anderson, J. (2012). Fair Lateness Scheduling: Reducing Maximum Lateness in G-EDF-Like
Scheduling. In Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages 3–12.

Erickson, J., Anderson, J., and Ward, B. (2014). Fair Lateness Scheduling: Reducing Maximum Lateness in
G-EDF-Like Scheduling. Real-Time Systems, 50(1):5–47.

Erickson, J., Devi, U., and Baruah, S. (2010). Improved Tardiness Bounds for Global EDF. In Proceedings
of the 22nd Euromicro Conference on Real-Time Systems, pages 14–23.

Faggioli, D., Lipari, G., and Cucinotta, T. (2010). The Multiprocessor Bandwidth Inheritance Protocol. In
Proceedings of the 22nd Euromicro Conference on Real-Time Systems, pages 90–99.

270

Fisher, N. (2007). The multiprocessor Real-Time Scheduling of General Task Systems. PhD thesis, University
of North Carolina at Chapel Hill.

Fonseca, J., Nelissen, G., Nelis, V., and Pinho, L. M. (2016). Response Time Analysis of Sporadic DAG
Tasks under Partitioned Scheduling. In Proceedings of the 11th IEEE Symposium on Industrial Embedded
Systems, pages 1–10.

Fonseca, J. C., Nélis, V., Raravi, G., and Pinho, L. M. (2015). A Multi-DAG Model for Real-Time Parallel
Applications with Conditional Execution. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, page 1925–1932.

Fonseca, J. C., Nelissen, G., and Nélis, V. (2019). Schedulability Analysis of DAG Tasks with Arbitrary
Deadlines under Global Fixed-Priority Scheduling. Real-Time Systems, 55(2):387–432.

Forget, J., Boniol, F., Grolleau, E., Lesens, D., and Pagetti, C. (2010). Scheduling Dependent Periodic
Tasks without Synchronization Mechanisms. In Proceedings of the 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 301–310.

Fu, Y., Kottenstette, N., Chen, Y., Lu, C., Koutsoukos, X. D., and Wang, H. (2010). Feedback Thermal
Control for Real-time Systems. In Proceedings of 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 111–120.

Funk, S. (2010). LRE-TL: An Optimal Multiprocessor Algorithm for Sporadic Task Sets with Unconstrained
Deadlines. Real-Time Systems, 46(3):332–359.

Funk, S. and Nadadur, V. (2009). LRE-TL: An Optimal Multiprocessing Scheduling Algorithm for Sporadic
Task Sets. In Proceedings of the 17th International Conferenece of Real-Time and Network Systems, pages
159–168.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., USA.

Geeraerts, G., Goossens, J., and Lindström, M. (2013). Multiprocessor Schedulability of Arbitrary-Deadline
Sporadic Tasks: Complexity and Antichain Algorithm. Real-Time Systems, 49:171–218.

Gohari, P., Voeten, J., and Nasri, M. (2024). Reachability-Based Response-Time Analysis of Preemptive
Tasks Under Global Scheduling. In Proceedings of the 36th Euromicro Conference on Real-Time Systems,
pages 3:1–3:24.

Goossens, J. and Berten, V. (2010). Gang FTP Scheduling of Periodic and Parallel Rigid Real-Time Tasks.
CoRR.

Goossens, J. and Devillers, R. (1997). The Non-Optimality of the Monotonic Priority Assignments for Hard
Real-Time Offset Free Systems. Real-Time Systems, 13(2):107–126.

Goossens, J. and Devillers, R. (1999). Feasibility Intervals for the Deadline Driven Scheduler with Arbitrary
Deadlines. In Proceedings of the 6th International Conference on Real-Time Computing Systems and
Applications, pages 54–61.

Goossens, J., Grolleau, E., and Cucu-Grosjean, L. (2016). Periodicity of Real-Time Schedules for Dependent
Periodic Tasks on Identical Multiprocessor Platforms. Real-Time Systems, 52(6):808–832.

271

Goossens, J. and Masson, D. (2022). Simulation Intervals for Uniprocessor Real-Time Schedulers with
Preemption Delay. In Proceedings of the 30th International Conference on Real-Time Networks and
Systems, pages 36–45.

Goossens, J. and Masson, D. (2024). Robust Schedulability Tests for Fixed Job Priorities: Addressing
Context Switch Costs with Non-Resumable Delays. In Proceedings of the 32nd International Conference
on Real-Time Networks and Systems, pages 290–301.

Goossens, J. and Richard, P. (2016). Optimal Scheduling of Periodic Gang Tasks. Leibniz Transactions on
Embedded Systems, 3(1):04:1–04:18.

Graham, R. L. (1969). Bounds on Multiprocessing Timing Anomalies. SIAM Jounral of Applied Mathematics,
17(2):416–429.

Grolleau, E. and Choquet-Geniet, A. (2002). Off-Line Computation of Real-Time Schedules Using Petri
Nets. Discrete Event Dynamic Systems, 12(3):311–333.

Grolleau, E., Goossens, J., and Cucu-Grosjean, L. (2013). On the Periodic Behavior of Real-Time Schedulers
on Identical Multiprocessor Platforms. CoRR, abs/1305.3849.

Guan, F., Peng, L., and Qiao, J. (2022). A Fluid Scheduling Algorithm for DAG Tasks with Constrained or
Arbitrary Deadlines. IEEE Transactions on Computers, 71(8):1860–1873.

Guan, F., Peng, L., and Qiao, J. (2023). A New Federated Scheduling Algorithm for Arbitrary-Deadline DAG
Tasks. IEEE Transactions on Computers, 72(8):2264–2277.

Guan, F., Qiao, J., and Han, Y. (2021). DAG-Fluid: A Real-Time Scheduling Algorithm for DAGs. IEEE
Transactions on Computers, 70(3):471–482.

Guan, N., Gu, Z., Deng, Q., Gao, S., and Yu, G. (2007). Exact Schedulability Analysis for Static-Priority
Global Multiprocessor Scheduling Using Model-Checking. In Proceedings of the Software Technologies
for Embedded and Ubiquitous Systems, pages 263–272.

Hamdaoui, M. and Ramanathan, P. (1995). A Dynamic Priority Assignment Technique for Streams with (m,
k)-Firm Deadlines. IEEE Transactions on Computers, 44(12):1443–1451.

Han, C.-C. and Tyan, H.-Y. (1997). A better polynomial-time schedulability test for real-time fixed-priority
scheduling algorithms. In Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 36–45.

Han, M., Guan, N., Sun, J., He, Q., Deng, Q., and Liu, W. (2019). Response Time Bounds for Typed DAG
Parallel Tasks on Heterogeneous Multi-Cores. IEEE Transactions on Parallel and Distributed Systems,
30(11):2567–2581.

He, Q., Guan, N., Lv, M., Jiang, X., and Chang, W. (2022). Bounding the Response Time of DAG Tasks
Using Long Paths. In Proceedings of the 43rd IEEE Real-Time Systems Symposium, pages 474–486.

He, Q., Jiang, X., Guan, N., and Guo, Z. (2019). Intra-Task Priority Assignment in Real-Time Scheduling of
DAG Tasks on Multi-Cores. IEEE Transactions on Parallel and Distributed Systems, 30(10):2283–2295.

He, Q., Lv, M., and Guan, N. (2021). Response Time Bounds for DAG Tasks with Arbitrary Intra-Task
Priority Assignment. In Proceedings of the 33rd Euromicro Conference on Real-Time Systems, volume
196, pages 8:1–8:21.

272

He, Q., Sun, J., Guan, N., Lv, M., and Sun, Z. (2023a). Real-Time Scheduling of Conditional DAG Tasks
With Intra-Task Priority Assignment. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 42(10):3196–3209.

He, Q., Sun, Y., Lv, M., and Liu, W. (2023b). Efficient Response Time Bound for Typed DAG Tasks. In
Proceedings of the 29th IEEE International Conference on Embedded and Real-Time Computing Systems,
pages 226–231.

Hobbs, C., Tong, Z., and Anderson, J. (2019). Optimal Soft Real-Time Semi-Partitioned Scheduling Made
Simple (and Dynamic). In Proceedings of the 27th International Conference on Real-Time Networks and
Systems, pages 112–122.

Hohmuth, M. and Härtig, H. (2001). Pragmatic Nonblocking Synchronization for Real-Time Systems. In
Proceedings of the General Track: 2001 USENIX Annual Technical Conference, page 217–230.

Holman, P. and Anderson, J. (2006). Locking Under Pfair Scheduling. ACM Transactions on Computer
Systems, 24(2):140–174.

Hong, K. and Leung, J.-T. (1988). On-line Scheduling of Real-Time Tasks. In Proceedings of the 9th IEEE
Real-Time Systems Symposium, pages 244–250.

Jaffe, J. M. (1980). Bounds on the Scheduling of Typed Task Systems. SIAM Journal of Computing,
9(3):541–551.

Jain, R., Hughes, C. J., and Adve, S. V. (2002). Soft Real-Time Scheduling on Simultaneous Multithreaded
Processors. In Proceedings of the 23rd IEEE Real-Time Systems Symposium, pages 134–145.

Jiang, X., Guan, N., Liang, H., Tang, Y., Qiao, L., and Yi, W. (2021). Virtually-Federated Scheduling
of Parallel Real-Time Tasks. In Proceedings of the 42nd IEEE Real-Time Systems Symposium, pages
482–494.

Jiang, X., Guan, N., Long, X., Tang, Y., and He, Q. (2020). Real-Time Scheduling of Parallel Tasks with
Tight Deadlines. Journal of Systems Architecture, 108:101742.

Jiang, X., Guan, N., Long, X., and Yi, W. (2017). Semi-Federated Scheduling of Parallel Real-Time Tasks on
Multiprocessors. In Proceedings of the 38th IEEE Real-Time Systems Symposium, pages 80–91.

Jiang, X., Long, X., Guan, N., and Wan, H. (2016). On the Decomposition-Based Global EDF Scheduling of
Parallel Real-Time Tasks. In Proceedings of the 37th IEEE Real-Time Systems Symposium, pages 237–246.

Jiang, X., Long, X., Yang, T., and Deng, Q. (2018). On the Soft Real-Time Scheduling of Parallel Tasks on
Multiprocessors. In Embedded Systems Technology, pages 65–77.

Kato, S. and Ishikawa, Y. (2009). Gang EDF Scheduling of Parallel Task Systems. In Proceedings of the
18th IEEE Real-Time Systems Symposium, pages 459–468.

Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., Monrroy, A., Ando, T.,
Fujii, Y., and Azumi, T. (2018). Autoware on Board: Enabling Autonomous Vehicles with Embedded
Systems. In Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems,
pages 287–296.

Kenna, C. J., Herman, J. L., Brandenburg, B. B., Mills, A. F., and Anderson, J. (2011). Soft Real-Time
on Multiprocessors: Are Analysis-Based Schedulers Really Worth It? In Proceedings of the 32nd IEEE
Real-Time Systems Symposium, pages 93–103.

273

Koren, G. and Shasha, D. (1995). Skip-Over: Algorithms and Complexity for Overloaded Systems that Allow
Skips. In Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 110–117.

Kramer, S., Ziegenbein, D., and Hamann, A. (2015). Real World Automotive Benchmarks for Free. In
Proceedings of the 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems.

Kubale, M. (1987). The Complexity of Scheduling Independent Two-Processor Tasks on Dedicated Processors.
Information Processing Letters, 24(3):141–147.

Lee, S., Guan, N., and Lee, J. (2011). Gang Fixed Priority Scheduling of Periodic Moldable Real-Time Tasks.
In Proceedings of the 4th Junior Researcher Workshop on Real-Time Computing, pages 132–144.

Lee, S., Guan, N., and Lee, J. (2022a). Design and Timing Guarantee for Non-Preemptive Gang Scheduling.
In Proceedings of the 43rd IEEE Real-Time Systems Symposium, pages 132–144.

Lee, S., Lee, S., and Lee, J. (2022b). Response Time Analysis for Real-Time Global Gang Scheduling. In
Proceedings of the 43rd IEEE Real-Time Systems Symposium, pages 92–104.

Leoncini, M., Montangero, M., and Valente, P. (2019). A Parallel Branch-and-Bound Algorithm to Compute
a Tighter Tardiness Bound for Preemptive Global EDF. Real-Time Systems, 55(2):349–386.

Leontyev, H. and Anderson, J. (2007). Tardiness Bounds for FIFO Scheduling on Multiprocessors. In
Proceedings of the 19th Euromicro Conference on Real-Time Systems, pages 71–80.

Leontyev, H. and Anderson, J. (2010). Generalized Tardiness Bounds for Global Multiprocessor Scheduling.
Real-Time Systems, 44(1-3):26–71.

Leung, J. Y. and Merrill, M. L. (1980). A Note on Preemptive Scheduling of Periodic, Real-Time Tasks.
Information Processing Letters, 11(3):115–118.

Leung, J. Y. and Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of Periodic, Real-Time
Tasks. Performance Evaluation, 2(4):237–250.

Levin, G., Funk, S., Sadowski, C., Pye, I., and Brandt, S. (2010). DP-FAIR: A Simple Model for Understand-
ing Optimal Multiprocessor Scheduling. In Proceedings of the 22nd Euromicro Conference on Real-Time
Systems, pages 3–13.

Li, H., Sweeney, J., Ramamritham, K., Grupen, R. A., and Shenoy, P. J. (2003). Real-Time Support for
Mobile Robotics. In Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 10–18.

Li, J., Agrawal, K., Gill, C., and Lu, C. (2014). Federated Scheduling for Stochastic Parallel Real-Time
Tasks. In Proceedings of the 31st IEEE International Conference on Embedded and Real-Time Computing
Systems and Application, pages 1–10.

Li, J., Agrawal, K., Lu, C., and Gill, C. (2013). Analysis of Global EDF for Parallel Tasks. In Proceedings of
the 25th Euromicro Conference on Real-Time Systems, pages 3–13.

Li, X., Ma, Y., Chen, Y., Sun, J., Chang, W., Guan, N., Chen, L., and Deng, Q. (2024). Priority Optimization
for Autonomous Driving Systems to Meet End-to-End Latency Constraints. In Proceedings of the 45th
IEEE Real-Time Systems Symposium, pages 402–414.

274

Lin, C., Shi, J., Ueter, N., Günzel, M., Reineke, J., and Chen, J. (2023). Type-Aware Federated Scheduling for
Typed DAG Tasks on Heterogeneous Multicore Platforms. IEEE Transactions on Computers, 72(5):1286–
1300.

Liu, C. and Anderson, J. (2010). Supporting Soft Real-Time DAG-Based Systems on Multiprocessors with
No Utilization Loss. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 3–13.

Liu, C. and Anderson, J. (2011). Supporting Graph-Based Real-Time Applications in Distributed Systems. In
Proceedings of the 17th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 143–152.

Liu, C. L. and Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM, 20(1):46–61.

Liu, S., Wagle, R., Ahmed, S., Tong, Z., and Anderson, J. (2025). ROSRT: Enabling Flexible Scheduling in
ROS 2. In Proceedings of the 46th IEEE Real-Time Systems Symposium. to appear.

Massey, D., Ahmed, S., and Anderson, J. (2024). On the Feasibility of Sporadic Tasks with Restricted
Parallelism on Heterogeneous Multiprocessors. In Proceedings of the 32nd International Conference on
Real-Time Networks and Systems, pages 105–116.

Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., and Buttazzo, G. C. (2015). Response-
Time Analysis of Conditional DAG Tasks in Multiprocessor Systems. In Proceedings of the 27th Euromicro
Conference on Real-Time Systems, pages 211–221.

Mollison, M., Erickson, J., Anderson, J., Baruah, S., and Scoredos, J. (2010). Mixed criticality real-time
scheduling for multicore systems. In ICESS, pages 1864–1871.

Nasri, M. and Brandenburg, B. (2017). An Exact and Sustainable Analysis of Non-Preemptive Scheduling.
In Proceedings of the 38th IEEE Real-Time Systems Symposium, pages 12–23.

Nasri, M., Nelissen, G., and Brandenburg, B. (2018). A Response-Time Analysis for Non-Preemptive Job
Sets under Global Scheduling. In Proceedings of the 30th Euromicro Conference on Real-Time Systems,
pages 9:1–9:23.

Nasri, M., Nelissen, G., and Brandenburg, B. B. (2019). Response-Time Analysis of Limited-Preemptive
Parallel DAG Tasks Under Global Scheduling. In Proceedings of the 31st Euromicro Conference on
Real-Time Systems, pages 21:1–21:23.

Nélis, V., Yomsi, P. M., and Goossens, J. (2013). Feasibility Intervals for Homogeneous Multicores,
Asynchronous Periodic Tasks, and FJP Schedulers. In Proceedings of the 21st International Conference on
Real-Time Networks and Systems, pages 277–286.

Nelissen, G., Berten, V., Goossens, J., and Milojevic, D. (2011). Reducing Preemptions and Migrations in
Real-Time Multiprocessor Scheduling Algorithms by Releasing the Fairness. In Proceedings of the 17th
IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pages
15–24.

Nelissen, G., i Igual, J. M., and Nasri, M. (2022). Response-Time Analysis for Non-Preemptive Periodic
Moldable Gang Tasks. In Proceedings of the 34th Euromicro Conference on Real-Time Systems, pages
12:1–12:22.

275

Nelissen, G., Su, H., Guo, Y., Zhu, D., Nelis, V., and Goossens, J. (2014). An Optimal Boundary Fair
Scheduling. Real-Time Systems, 50:456–508.

Osborne, S. H., Ahmed, S., Nandi, S., and Anderson, J. (2020). Exploiting Simultaneous Multithreading in
Priority-Driven Hard Real-Time Systems. In Proceedings of the 26th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 1–10.

Ousterhout, J. K. (1982). Scheduling Techniques for Concurrent Systems. In Proceedings of the 3rd
International Conference on Distributed Computing Systems, pages 22–30.

Parri, A., Biondi, A., and Marinoni, M. (2015). Response Time Analysis for G-EDF and G-DM Scheduling
of Sporadic DAG-Tasks with Arbitrary Deadline. In Proceedings of the 30th International Conference on
Real-Time Networks and System, pages 205–214.

Patel, P., Baek, I., Kim, H., and Rajkumar, R. (2018). Analytical Enhancements and Practical Insights for
MPCP with Self-Suspensions. In Proceedings of the 24th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 177–189.

Pathan, R., Voudouris, P., and Stenström, P. (2018). Scheduling Parallel Real-Time Recurrent Tasks on
Multicore Platforms. IEEE Transactions on Parallel and Distributed Systems, 29(4):915–928.

Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems. Springer Publishing Company,
Incorporated, 3rd edition.

Prisaznuk, P. J. (2008). Arinc 653 role in integrated modular avionics (ima). In Proceedings of the 27th
IEEE/AIAA Digital Avionics Systems Conference, pages 1.E.5–1–1.E.5–10.

Purdom, P. (1970). A Transitive Closure Algorithm. BIT, 10:76–94.

Qamhieh, M., Fauberteau, F., George, L., and Midonnet, S. (2013). Global EDF Scheduling of Directed
Acyclic Graphs on Multiprocessor Systems. In Proceedings of the 21st International conference on
Real-Time Networks and Systems, pages 287–296.

Qamhieh, M., George, L., and Midonnet, S. (2014). A Stretching Algorithm for Parallel Real-time DAG
Tasks on Multiprocessor Systems. In Proceedings of the 22nd International Conference on Real-Time
Networks and Systems, page 13–22.

Rajkumar, R. (1990). Real-Time Synchronization Protocols for Shared Memory Multiprocessors. In
Proceedings of the International Conference on Distributed Computing Systems, pages 116–123.

Rajkumar, R. (1991). Synchronization In Real-Time Systems – A Priority Inheritance Approach. Kluwer
Academic Publishers.

Rajkumar, R., Sha, L., and Lehoczky, J. (1988). Real-Time Synchronization Protocols for Multiprocessors.
In Proceedings of the 9th IEEE Real-Time Systems Symposium, pages 259–269.

Regnier, P., Lima, G., Massa, E., Levin, G., and Brandt, S. A. (2011). RUN: Optimal Multiprocessor
Real-Time Scheduling via Reduction to Uniprocessor. In Proceedings of the 32nd IEEE Real-Time Systems
Symposium, pages 104–115.

Richard, P., Goossens, J., and Kato, S. (2017). Comments on ”Gang EDF Schedulability Analysis”. CoRR,
abs/1705.05798.

276

Rispo, V., Aromolo, F., Casini, D., and Biondi, A. (2024). Response-Time Analysis of Bundled Gang Tasks
Under Partitioned FP Scheduling. IEEE Transactions on Computers, 73(11):2534–2547.

Saifullah, A., Agrawal, K., Lu, C., and Gill, C. (2011). Multi-core Real-Time Scheduling for Generalized
Parallel Task Models. In Proceedings of the 32nd IEEE Real-Time Systems Symposium, pages 217–226.

Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., and Gill, C. D. (2014). Parallel Real-Time Scheduling of
DAGs. IEEE Transactions on Parallel and Distributed Systems, 25(12):3242–3252.

Serrano, M. A. and Quiñones, E. (2018). Response-Time Aanalysis of DAG Tasks Supporting Heterogeneous
Computing. In Proceedings of the 55th Design and Automation Conference, pages 125:1–125:6.

Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority Inheritance Protocols: An Approach to Real-Time
System Synchronization. IEEE Transactions on Computers, 39(9):1175–1185.

Shi, J., Günzel, M., Ueter, N., der Bruggen, G. v., and Chen, J.-J. (2024). DAG Scheduling with Execu-
tion Groups. In Proceedings of the 30th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 149–160.

Shih, C., Gopalakrishnan, S., Ganti, P., Caccamo, M., and Sha, L. (2003). Scheduling Real-Time Dwells
Using Tasks with Synthetic Periods. In Proceedings of the 24th IEEE Real-Time Systems Symposium,
pages 210–219.

Stoica, I., Abdel-Wahab, H. M., Jeffay, K., Baruah, S., Gehrke, J., and Plaxton, C. G. (1996). A Proportional
Share Resource Allocation Algorithm for Real-Time, Time-Shared Systems. In Proceedings of the 17th
IEEE Real-Time Systems Symposium, pages 288–299.

Sun, B., Kloda, T., and Caccamo, M. (2024a). Strict Partitioning for Sporadic Rigid Gang Tasks. In
Proceedings of the 30th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
252–264.

Sun, B., Kloda, T., Wu, C., and Caccamo, M. (2024b). Partitioned Scheduling and Parallelism Assignment
for Real-Time DNN Inference Tasks on Multi-TPU. In Proceedings of the 61st Design and Automation
Conference, pages 333:1–333:6.

Sun, J., Duan, K., Li, X., Guan, N., Guo, Z., Deng, Q., and Tan, G. (2023). Real-Time Scheduling of
Autonomous Driving System with Guaranteed Timing Correctness. In Proceedings of the 29th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 185–197.

Sun, J., Guan, N., Sun, J., Zhang, X., Chi, Y., and Li, F. (2021). Algorithms for Computing the WCRT Bound
of OpenMP Task Systems With Conditional Branches. IEEE Transaction of Computers, 70(1):57–71.

Sun, J., Li, F., Guan, N., Zhu, W., Xiang, M., Guo, Z., and Yi, W. (2020). On Computing Exact WCRT for
DAG Tasks. In In Proceedings of the 57th ACM/IEEE Design Automation Conference, pages 1–6.

Sun, Y. and Lipari, G. (2016). A Pre-Order Relation for Exact Schedulability Test of Sporadic Tasks on
Multiprocessor Global Fixed-Priority Scheduling. Real-Time Systems, 52:323–355.

Tang, S. (2024). Extending Soft Real-Time Analysis for Heterogeneous Multiprocessors. PhD thesis,
University of North Carolina, Chapel Hill, USA.

Tang, S. and Anderson, J. (2020). Towards Practical Multiprocessor EDF with Affinities. In Proceedings of
the 41st IEEE Real-Time Systems Symposium, pages 89–101.

277

Tang, S., Voronov, S., and Anderson, J. (2019). GEDF Tardiness: Open Problems Involving Uniform
Multiprocessors and Affinity Masks Resolved. In Proceedings of the 31st Euromicro Conference on
Real-Time Systems, pages 13:1–13:21.

Tang, S., Voronov, S., and Anderson, J. (2021). Extending EDF for Soft Real-Time Scheduling on Unrelated
Multiprocessors. In Proceedings of the 42nd IEEE Real-Time Systems Symposium, pages 253–265.

The Linux Kernel Organization (2024). RT-mutex Subsystem with PI support. The Linux Kernel Organization.
https://docs.kernel.org/locking/rt-mutex.html.

Tong, Z., Ahmed, S., and Anderson, J. (2022). Overrun-Resilient Multiprocessor Real-Time Locking. In
Proceedings of the 34th Euromicro Conference on Real-Time Systems, pages 10:1–10:25.

Tong, Z., Ahmed, S., and Anderson, J. (2023). Holistically Budgeting Processing Graphs. In Proceedings of
the 44th IEEE Real-Time Systems Symposium, pages 27–39.

Tong, Z., Ali, S. W., and Anderson, J. (2025). Asymptotically Optimal Multiprocessor Real-Time Locking for
non-JLFP Scheduling. In 31st IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 1–12.

Ueter, N., Günzel, M., von der Brüggen, G., and Chen, J. (2021). Hard Real-Time Stationary Gang-Scheduling.
In Proceedings of the 33rd Euromicro Conference on Real-Time Systems, pages 10:1–10:19.

Ueter, N., Günzel, M., von der Brüggen, G., and Chen, J. (2023). Parallel Path Progression DAG Scheduling.
IEEE Transaction on Computers, 72(10):3002–3016.

Ueter, N., von der Brüggen, G., Chen, J., Li, J., and Agrawal, K. (2018). Reservation-Based Federated
Scheduling for Parallel Real-Time Tasks. In Proceedings of the 39th IEEE Real-Time Systems Symposium,
pages 482–494.

Ullman, J. (1975). NP-Complete Scheduling Problems. Journal of Computer and System Sciences, 10(3):384–
393.

Valente, P. (2016). Using a Lag-Balance Property to Tighten Tardiness Bounds for Global EDF. Real-Time
Systems, 52(4):486–561.

Verucchi, M., Theile, M., Caccamo, M., and Bertogna, M. (2020). Latency-Aware Generation of Single-Rate
DAGs from Multi-Rate Task Sets. In Proceedings of the 26th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 226–238.

Voronov, S., Anderson, J., and Yang, K. (2021a). Tardiness Bounds for Fixed-Priority Global Scheduling
without Intra-Task Precedence Constraints. Real-Time Systems, 57(1-2):4–54.

Voronov, S., Tang, S., Amert, T., and Anderson, J. (2021b). AI Meets Real-Time: Addressing Real-World
Complexities in Graph Response-Time Analysis. In Proceedings of the 42nd IEEE Real-Time Systems
Symposium, pages 82–96.

Wang, K., Jiang, X., Guan, N., Liu, D., Liu, W., and Deng, Q. (2019). Real-Time Scheduling of DAG Tasks
with Arbitrary Deadlines. ACM Transactions on Design Automation of Electronic Systems, 24(6):66:1–
66:22.

Wang, Y., Liu, C., Wong, D., and Kim, H. (2024). GCAPS: GPU Context-Aware Preemptive Priority-Based
Scheduling for Real-Time Tasks. In Proceedings of the 25th Euromicro Conference on Real-Time Systems,
pages 14:1–14:25.

278

https://docs.kernel.org/locking/rt-mutex.html

Ward, B., Elliott, G., and Anderson, J. (2012). Replica-Request Priority Donation: A Real-Time Progress
Mechanism for Global Locking Protocols. In Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 280–289.

Wasly, S. and Pellizzoni, R. (2019). Bundled Scheduling of Parallel Real-Time Tasks. In Proceedings of the
25th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 130–142.

West, R. and Poellabauer, C. (2000). Analysis of a Window-Constrained Scheduler for Real-Time and
Best-Effort Packet Streams. In Proceedings of the 21st IEEE Real-Time Systems Symposium, pages
239–248.

Wilhelm, R. (2020). Real Time Spent on Real Time (invited talk). In Proceedings of the 41st IEEE Real-Time
Systems Symposium, pages 1–2.

Yang, K. and Anderson, J. (2015a). An Optimal Semi-partitioned Scheduler for Uniform Heterogeneous
Multiprocessors. In Proceedings of the 27th Euromicro Conference on Real-Time Systems, pages 199–210.

Yang, K. and Anderson, J. (2015b). On the Soft Real-Time Optimality of Global EDF on Multiprocessors:
From Identical to Uniform Heterogeneous. In Proceedings of the 21st IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 1–10.

Yang, K. and Anderson, J. (2017). On the Soft Real-Time Optimality of Global EDF on Uniform Multipro-
cessors. In Proceedings of the 38th IEEE Real-Time Systems Symposium, pages 319–330.

Yang, K., Yang, M., and Anderson, J. (2016). Reducing Response-Time Bounds for DAG-Based Task
Systems on Heterogeneous Multicore Platforms. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems, pages 349–358.

Yang, M., Amert, T., Yang, K., Otterness, N., Anderson, J. H., Smith, F. D., and Wang, S. (2018). Making
OpenVX Really “Real Time”. In Proceedings of the 39th IEEE Real-Time Systems Symposium, pages
80–93.

Yang, M., Wieder, A., and Brandenburg, B. (2015). Global Real-Time Semaphore Protocols: A Survey,
Unified Analysis, and Comparison. In Proceedings of the 36th IEEE Real-Time Systems Symposium, pages
1–12.

Zhao, S., Dai, X., Bate, I., Burns, A., and Chang, W. (2020). DAG Scheduling and Analysis on Multiprocessor
Systems: Exploitation of Parallelism and Dependency. In Proceedings of the 41st IEEE Real-Time Systems
Symposium, pages 128–140.

Zhu, D., Mossé, D., and Melhem, R. G. (2003). Multiple-Resource Periodic Scheduling Problem: How Much
Fairness is Necessary? In Proceedings of the 24th IEEE Real-Time Systems Symposium, pages 142–151.

279

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Real-Time Systems
	Sporadic Task Model
	Hardware Model
	Scheduling Algorithms
	Schedulability, Feasibility, and Optimality
	Schedulability Test and Response-Time Analysis
	Emerging Real-Time Systems

	Limitations of the State-of-the-Art
	Non-Tight Bounds for Sequential and DAG Tasks
	Mysteries Around Optimal Suspension-Based Locking Protocols
	Scheduling Gang Tasks
	Thesis Statement
	Contributions
	Tight and Exact Response-Time Bounds for Sequential and DAG Tasks
	Periodic Tasks
	Periodic DAG Tasks

	Optimality Results for Suspension-Based Locking Protocols
	Scheduling Gang Tasks
	SRT Scheduling of Independent Gang Tasks
	HRT Scheduling of Processing Graphs Formed by Gang Tasks

	Organization
	Background and Prior Work
	Sequential Tasks
	SRT-Optimal Scheduling
	Exact HRT-Schedulability Test
	SRT Response-Time Analysis
	DAG Tasks
	Complexities in DAG Scheduling
	DAG Scheduling Approaches
	Feasibility Results
	HRT-Schedulability Analysis
	SRT Response-Time Analysis

	Other DAG Models
	Suspension-Based Mutex Locks
	S-Oblivious Pi-Blocking Bounds
	S-Aware Pi-Blocking Bounds
	Gang Tasks
	Prior Work
	General Definitions and Notation
	Chapter Summary
	Response-Time Bound for Pseudo-Harmonic Sequential Tasks
	System Model
	The Concept of LAG
	Response-Time Bound
	Properties of lag
	Deriving Response-Time Bounds
	An Alternate Response-Time Bound
	Exact Response-Time Bound
	Experimental Evaluation
	Chapter Summary
	Server-Based Scheduling of DAG Tasks
	System Model
	Server-Based Scheduling of DAG Tasks
	Basic Response-Time Bound
	Exact Response-Time Bound
	Definitions and Notation
	Analysis of Servers
	Analysis of DAG Tasks
	Experimental Evaluation
	Chapter Summary
	Suspension-Based Multiprocessor Locking Protocols
	System Model
	Lower-Bound Results for Non-FIFO Global JLFP Schedulers
	General Lower Bound on Pi-Blocking
	Task System
	Lower-Bound Proof
	Job Priority Assignment

	Improved Lower Bound Under An Additional Assumption
	Task System
	Lower-Bound Proof
	Job Priority Assignment

	Optimality Results Under FIFO Scheduling
	Resource-Holder's Progress Under FIFO Scheduling
	Mutex Locks
	k-Exclusion Locks
	Reader-Writer Locks
	Experimental Evaluation
	Chapter Summary
	
	System Model
	SRT-Feasibility of Gang Tasks
	Necessary Condition for SRT-Feasibility
	Sufficient Condition for SRT-Feasibility
	Schedulability Under Server-Based Scheduling
	FP Scheduling of Servers
	Least-Laxity-First Scheduling of Servers
	ILP-Based Scheduling of Servers
	Schedulability Under G-EDF
	Non-SRT-Optimality Under G-EDF
	A G-EDF Schedulability Test
	Experimental Evaluation

	Chapter Summary
	Scheduling Gang Tasks with Precedence Constraints
	System Model
	Scheduling
	Federated Scheduling
	Scheduling DAGs on Allocated Processors
	Parallelism-Induced Idleness
	Work-Conserving Schedulers
	Semi-Work-Conserving Schedulers
	Response-Time Bound
	Processor Allocation
	Experimental Evaluation
	Experiments on Arbitrary Number of CEs
	Experiments on Multicore+GPU
	Case Study on Multicore+GPU

	Chapter Summary
	Conclusion
	Summary of Results
	Other Work
	Future Work
	BIBLIOGRAPHY

